831 research outputs found
Study of the Fusion-Fission Process in the Reaction
Fusion-fission and fully energy-damped binary processes of the
Cl+Mg reaction were investigated using particle-particle
coincidence techniques at a Cl bombarding energy of E
8 MeV/nucleon. Inclusive data were also taken in order to determine the partial
wave distribution of the fusion process. The fragment-fragment correlation data
show that the majority of events arises from a binary-decay process with a
relatively large multiplicity of secondary light-charged particles emitted by
the two primary excited fragments in the exit channel. No evidence is observed
for ternary-breakup processes, as expected from the systematics recently
established for incident energies below 15 MeV/nucleon and for a large number
of reactions. The binary-process results are compared with predictions of
statistical-model calculations. The calculations were performed using the
Extended Hauser-Feshbach method, based on the available phase space at the
scission point of the compound nucleus. This new method uses
temperature-dependent level densities and its predictions are in good agreement
with the presented experimental data, thus consistent with the fusion-fission
origin of the binary fully-damped yields.Comment: 30 pages standard REVTeX file, 10 eps Figures; to be published at the
European Physical Journal A - Hadrons and Nucle
The melanoma-specific graded prognostic assessment does not adequately discriminate prognosis in a modern population with brain metastases from malignant melanoma
The melanoma-specific graded prognostic assessment (msGPA) assigns patients with brain metastases from malignant melanoma to 1 of 4 prognostic groups. It was largely derived using clinical data from patients treated in the era that preceded the development of newer therapies such as BRAF, MEK and immune checkpoint inhibitors. Therefore, its current relevance to patients diagnosed with brain metastases from malignant melanoma is unclear. This study is an external validation of the msGPA in two temporally distinct British populations.Performance of the msGPA was assessed in Cohort I (1997-2008, n=231) and Cohort II (2008-2013, n=162) using Kaplan-Meier methods and Harrell's c-index of concordance. Cox regression was used to explore additional factors that may have prognostic relevance.The msGPA does not perform well as a prognostic score outside of the derivation cohort, with suboptimal statistical calibration and discrimination, particularly in those patients with an intermediate prognosis. Extra-cerebral metastases, leptomeningeal disease, age and potential use of novel targeted agents after brain metastases are diagnosed, should be incorporated into future prognostic models.An improved prognostic score is required to underpin high-quality randomised controlled trials in an area with a wide disparity in clinical care
Eta photoproduction off the neutron at GRAAL: Evidence for a resonant structure at W=1.67 GeV
New (preliminary) data on eta photoproduction off the neutron are presented.
These data reveal a resonant structure at W=1.67 GeV.Comment: 8 pages, 4 figures. Published in Proceedings of Workshop on the
Physics of Excited Nucleons NSTAR2004, Grenoble, France, March 24 - 27,
pg.19
Lowering the Light Speed Isotropy Limit: European Synchrotron Radiation Facility Measurements
The measurement of the Compton edge of the scattered electrons in GRAAL
facility in European Synchrotron Radiation Facility (ESRF) in Grenoble with
respect to the Cosmic Microwave Background dipole reveals up to 10 sigma
variations larger than the statistical errors. We now show that the variations
are not due to the frequency variations of the accelerator. The nature of
Compton edge variations remains unclear, thus outlining the imperative of
dedicated studies of light speed anisotropy
A new limit on the light speed isotropy from the GRAAL experiment at the ESRF
When the electrons stored in the ring of the European Synchrotron Radiation
Facility (ESRF, Grenoble) scatter on a laser beam (Compton scattering in
flight) the lower energy of the scattered electron spectra, the Compton Edge
(CE), is given by the two body photon-electron relativistic kinematics and
depends on the velocity of light. A precision measurement of the position of
this CE as a function of the daily variations of the direction of the electron
beam in an absolute reference frame provides a one-way test of Relativistic
Kinematics and the isotropy of the velocity of light. The results of GRAAL-ESRF
measurements improve the previously existing one-way limits, thus showing the
efficiency of this method and the interest of further studies in this
direction.Comment: Proceed. MG12 meeting, Paris, July, 200
Search for light-speed anisotropies using Compton scattering of high-energy electrons
Based on the high sensitivity of Compton scattering off ultra relativistic
electrons, the possibility of anisotropies in the speed of light is
investigated. The result discussed in this contribution is based on the
gamma-ray beam of the ESRF's GRAAL facility (Grenoble, France) and the search
for sidereal variations in the energy of the Compton-edge photons. The absence
of oscillations yields the two-sided limit of 1.6 x 10^{-14} at 95 % confidence
level on a combination of photon and electron coefficients of the minimal
Standard Model Extension (mSME). This new constraint provides an improvement
over previous bounds by one order of magnitude.Comment: Talk presented at the Fifth Meeting on CPT and Lorentz Symmetry,
University of Indiana, June 28-July 2, 201
Limits on light-speed anisotropies from Compton scattering of high-energy electrons
The possibility of anisotropies in the speed of light relative to the
limiting speed of electrons is considered. The absence of sidereal variations
in the energy of Compton-edge photons at the ESRF's GRAAL facility constrains
such anisotropies representing the first non-threshold collision-kinematics
study of Lorentz violation. When interpreted within the minimal Standard-Model
Extension, this result yields the two-sided limit of 1.6 x 10^{-14} at 95%
confidence level on a combination of the parity-violating photon and electron
coefficients kappa_{o+} and c. This new constraint provides an improvement over
previous bounds by one order of magnitude.Comment: 4 pages, 4 figure
Evidence for Narrow N*(1685) Resonance in Quasifree Compton Scattering on the Neutron
The first study of quasi-free Compton scattering on the neutron in the energy
range of GeV is presented. The data reveals a narrow
peak at GeV. This result, being considered in conjunction with
the recent evidence for a narrow structure at GeV in the
photoproduction on the neutron, suggests the existence of a new nucleon
resonance with unusual properties: the mass GeV, the narrow width
MeV, and the much stronger photoexcitation on the neutron than
on the proton.Comment: Replaced with the version published in Phys. Rev.
- …
