746 research outputs found

    Electrical Detection and Magnetic-Field Control of Spin States in Phosphorus-Doped Silicon

    Full text link
    Electron paramagnetic resonance of ensembles of phosphorus donors in silicon has been detected electrically with externally applied magnetic fields lower than 200 G. Because the spin Hamiltonian was dominated by the contact hyperfine term rather than by the Zeeman terms at such low magnetic fields, superposition states α∣↑↓>+β∣↓↑> \alpha{}| \uparrow \downarrow >+\beta{}| \downarrow \uparrow > and −β∣↑↓>+α∣↓↑>-\beta{}| \uparrow \downarrow > + \alpha{}| \downarrow \uparrow > were formed between phosphorus electron and nuclear spins, and electron paramagnetic resonance transitions between these superposition states and ∣↑↑>| \uparrow \uparrow > or ∣↓↓>| \downarrow \downarrow > states are observed clearly. A continuous change of α\alpha{} and β\beta{} with the magnetic field was observed with a behavior fully consistent with theory of phosphorus donors in silicon.Comment: 6 pages, 5 figure

    The assessment of disability related to vision performance-based measure in diabetic retinopathy.

    Get PDF
    PURPOSE: To validate a third-generation performance-based measure of visual function titled Assessment of Disability Related to Vision (ADREV) in a study population of patients with diabetic retinopathy. DESIGN: Prospective, cross-sectional study. METHODS: Patients with nonproliferative or proliferative diabetic retinopathy, free from ocular comorbidity, were recruited from a single institute and completed the ADREV, the 25-Item National Eye Institute Visual Functioning Questionnaire (VFQ-25), and a clinical ophthalmic examination. Correlation, regression, and bootstrap analysis were conducted to determine the relationship between ADREV scoring and each of the study\u27s clinical and self-report measures of visual ability, while controlling for potential confounders. RESULTS: Ninety-one patients with diabetic retinopathy completed the study and analysis showed that the ADREV total and subscale scores shared a stronger relationship with the clinical measures of visual function than did the VFQ total and subscale scores. Regression analysis revealed that binocular visual acuity, contrast sensitivity, and better eye visual field were the best predictors of ADREV performance. CONCLUSIONS: The ADREV performance measure is a valid instrument for the assessment of disability related to vision in patients with diabetic retinopathy. Furthermore, the assessments provided by ADREV were more related to traditional clinical indicators of visual impairment than were the results of the self-report measure, specifically the VFQ-25

    The Role of the Mucus Barrier in Digestion

    Get PDF
    Mucus forms a protective layer across a variety of epithelial surfaces. In the gastrointestinal (GI) tract, the barrier has to permit the uptake of nutrients, while excluding potential hazards, such as pathogenic bacteria. In this short review article, we look at recent literature on the structure, location, and properties of the mammalian intestinal secreted mucins and the mucus layer they form over a wide range of length scales. In particular, we look at the structure of the gel-forming glycoprotein MUC2, the primary intestinal secreted mucin, and the influence this has on the properties of the mucus layer. We show that, even at the level of the protein backbone, MUC2 is highly heterogeneous and that this is reflected in the networks it forms. It is evident that a combination of charge and pore size determines what can diffuse through the layer to the underlying gut epithelium. This information is important for the targeted delivery of bioactive molecules, including nutrients and pharmaceuticals, and for understanding how GI health is maintained

    Spectral Analysis of the Supreme Court

    Get PDF
    The focus of this paper is the linear algebraic framework in which the spectral analysis of voting data like that above is carried out. As we will show, this framework can be used to pinpoint voting coalitions in small voting bodies like the United States Supreme Court. Our goal is to show how simple ideas from linear algebra can come together to say something interesting about voting. And what could be more simple than where our story begins— with counting

    Structure of the silicon vacancy in 6H-SiC after annealing identified as the carbon vacancy–carbon antisite pair

    Get PDF
    We investigated radiation-induced defects in neutron-irradiated and subsequently annealed 6H-silicon carbide (SiC) with electron paramagnetic resonance (EPR), the magnetic circular dichroism of the absorption (MCDA), and MCDA-detected EPR (MCDA-EPR). In samples annealed beyond the annealing temperature of the isolated silicon vacancy we observed photoinduced EPR spectra of spin S=1 centers that occur in orientations expected for nearest neighbor pair defects. EPR spectra of the defect on the three inequivalent lattice sites were resolved and attributed to optical transitions between photon energies of 999 and 1075 meV by MCDA-EPR. The resolved hyperfine structure indicates the presence of one single carbon nucleus and several silicon ligand nuclei. These experimental findings are interpreted with help of total energy and spin density data obtained from the standard local-spin density approximation of the density-functional theory, using relaxed defect geometries obtained from the self-consistent charge density-functional theory based tight binding scheme. We have checked several defect models of which only the photoexcited spin triplet state of the carbon antisite–carbon vacancy pair (CSi-VC) in the doubly positive charge state can explain all experimental findings. We propose that the (CSi-VC) defect is formed from the isolated silicon vacancy as an annealing product by the movement of a carbon neighbor into the vacancy

    A Summary of Recent Damage-Initiation Experiments on KDP Crystals

    Get PDF
    ABSTRACT We summarize recent investigations of the density and morphology of bulk damage in KDP crystals as a function of pulse duration, temporal profile, wavelength, and energy fluence. As previously reported by Runkel et al. 1 , we also find that the size of bulk damage sites varies roughly linearly with pulse duration for pulses between 1 ns and 9 ns. However this trend no longer applies at pulse durations below 1 ns. Experiments measuring the damage density and size distribution as a function of wavelength confirm many previous works which indicated a strong dependence of damage density with wavelength. However, we also find that the size of damage sites is relatively insensitive to wavelength. Further we see damage due to Flat-In-Time (FIT) pulses has different pulse length and fluence dependence than Gaussian pulses. We demonstrate that a simple thermal diffusion model can account for observed differences in damage densities due to square and Gaussian temporally shaped pulses of equal fluence. Moreover, we show that the key laser parameter governing size of the bulk damage sites is the length of time the pulse remains above a specific intensity. The different dependences of damage density and damage site size on laser parameters suggest different absorption mechanisms early and late in the damaging pulse
    • …
    corecore