128 research outputs found

    Enhancing Nutrient Use Efficiencies in Rainfed Systems

    Get PDF
    Successful and sustained crop production to feed burgeoning population in rainfed areas, facing soil fertility-related degradation through low and imbalanced amounts of nutrients, requires regular nutrient inputs through biological, organic or inorganic sources of fertilizers. Intensification of fertilizer (all forms) use has given rise to concerns about efficiency of nutrient use, primarily driven by economic and environmental considerations. Inefficient nutrient use is a key factor pushing up the cost of cultivation and pulling down the profitability in farming while putting at stake the sustainability of rainfed farming systems. Nutrient use efficiency implies more produce per unit of nutrient applied; therefore, any soil-water-crop management practices that promote crop productivity at same level of fertilizer use are expected to enhance nutrient use efficiency. Pervasive nutrient depletion and imbalances in rainfed soils are primarily responsible for decreasing yields and declining response to applied macronutrient fertilizers. Studies have indicated soil test-based balanced fertilization an important driver for enhancing yields and improving nutrient use efficiency in terms of uptake, utilization and use efficiency for grain yield and harvest index indicating improved grain nutritional quality. Recycling of on-farm wastes is a big opportunity to cut use and cost of chemical fertilizers while getting higher yield levels at same macronutrient levels. Best management practices like adoption of high-yielding and nutrient-efficient cultivars, landform management for soil structure and health, checking pathways of nutrient losses or reversing nutrient losses through management at watershed scale and other holistic crop management practices have great scope to result in enhancing nutrient and resource use efficiency through higher yields. The best practices have been found to promote soil organic carbon storage that is critical for optimum soil processes and improve soil health and enhance nutrient use efficiency for sustainable intensification in the rainfed systems

    Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial.

    Get PDF
    An in vitro study was undertaken to evaluate the compatibility of indigenous plant growth promoting rhizobacteria (PGPR) with commonly used inorganic and organic sources of fertilizers in tea plantations. The nitrogenous, phosphatic and potash fertilizers used for this study were urea, rock phosphate and muriate of potash, respectively. The organic sources of fertilizers neem cake, composted coir pith and vermicompost were also used. PGPRs such as nitrogen fixer; Azospirillum lipoferum, Phosphate Solubilizing Bacteria (PSB); Pseudomonas putida, Potassium Solubilizing Bacteria (KSB); Burkholderia cepacia and Pseudomonas putida were used for compatibility study. Results were indicated that PGPRs preferred the coir pith and they proved their higher colony establishment in the formulation except Azospirillum spp. that preferred vermicompost for their establishment. The optimum dose of neem cake powder

    The Alvarado score for predicting acute appendicitis: a systematic review

    Get PDF
    Background: The Alvarado score can be used to stratify patients with symptoms of suspected appendicitis; the validity of the score in certain patient groups and at different cut points is still unclear. The aim of this study was to assess the discrimination (diagnostic accuracy) and calibration performance of the Alvarado score. Methods: A systematic search of validation studies in Medline, Embase, DARE and The Cochrane library was performed up to April 2011. We assessed the diagnostic accuracy of the score at the two cut-off points: score of 5 (1 to 4 vs. 5 to 10) and score of 7 (1 to 6 vs. 7 to 10). Calibration was analysed across low (1 to 4), intermediate (5 to 6) and high (7 to 10) risk strata. The analysis focused on three sub-groups: men, women and children. Results: Forty-two studies were included in the review. In terms of diagnostic accuracy, the cut-point of 5 was good at 'ruling out' admission for appendicitis (sensitivity 99% overall, 96% men, 99% woman, 99% children). At the cut-point of 7, recommended for 'ruling in' appendicitis and progression to surgery, the score performed poorly in each subgroup (specificity overall 81%, men 57%, woman 73%, children 76%). The Alvarado score is well calibrated in men across all risk strata (low RR 1.06, 95% CI 0.87 to 1.28; intermediate 1.09, 0.86 to 1.37 and high 1.02, 0.97 to 1.08). The score over-predicts the probability of appendicitis in children in the intermediate and high risk groups and in women across all risk strata. Conclusions: The Alvarado score is a useful diagnostic 'rule out' score at a cut point of 5 for all patient groups. The score is well calibrated in men, inconsistent in children and over-predicts the probability of appendicitis in women across all strata of risk

    Plant growth promoting rhizobia: challenges and opportunities

    Get PDF

    Genomic-Assisted Enhancement in Stress Tolerance for Productivity Improvement in Sorghum

    Get PDF
    Sorghum [Sorghum bicolor (L.) Moench], the fifth most important cereal crop in the world after wheat, rice, maize, and barley, is a multipurpose crop widely grown for food, feed, fodder, forage, and fuel, vital to the food security of many of the world’s poorest people living in fragile agroecological zones. Globally, sorghum is grown on ~42 million hectares area in ~100 countries of Africa, Asia, Oceania, and the Americas. Sorghum grain is used mostly as food (~55%), in the form of flat breads and porridges in Asia and Africa, and as feed (~33%) in the Americas. Stover of sorghum is an increasingly important source of dry season fodder for livestock, especially in South Asia. In India, area under sorghum cultivation has been drastically come down to less than one third in the last six decades but with a limited reduction in total production suggesting the high-yield potential of this crop. Sorghum productivity is far lower compared to its genetic potential owing to a limited exploitation of genetic and genomic resources developed in the recent past. Sorghum production is challenged by various abiotic and biotic stresses leading to a significant reduction in yield. Advances in modern genetics and genomics resources and tools could potentially help to further strengthen sorghum production by accelerating the rate of genetic gains and expediting the breeding cycle to develop cultivars with enhanced yield stability under stress. This chapter reviews the advances made in generating the genetic and genomics resources in sorghum and their interventions in improving the yield stability under abiotic and biotic stresses to improve the productivity of this climate-smart cereal

    Complicated intra-abdominal infections worldwide : the definitive data of the CIAOW Study

    Get PDF
    Peer reviewe
    • …
    corecore