39 research outputs found

    Comparison of three rapid and easy bacterial DNA extraction methods for use with quantitative real-time PCR

    Get PDF
    The development of fast and easy on-site molecular detection and quantification methods for hazardous microbes on solid surfaces is desirable for several applications where specialised laboratory facilities are absent. The quantification of bacterial contamination necessitates the assessment of the efficiency of the used methodology as a whole, including the preceding steps of sampling and sample processing. We used quantitative real-time polymerase chain reaction (qrtPCR) for Escherichia coli and Staphylococcus aureus to measure the recovery of DNA from defined numbers of bacterial cells that were subjected to three different DNA extraction methods: the QIAamp® DNA Mini Kit, Reischl et al.’s method and FTA® Elute. FTA® Elute significantly showed the highest median DNA extraction efficiency of 76.9% for E. coli and 108.9% for S. aureus. The Reischl et al. method and QIAamp® DNA Mini Kit inhibited the E. coli qrtPCR assay with a 10-fold decrease of detectable DNA. None of the methods inhibited the S. aureus qrtPCR assay. The FTA® Elute applicability was demonstrated with swab samples taken from the International Space Station (ISS) interior. Overall, the FTA® Elute method was found to be the most suitable to selected criteria in terms of rapidity, easiness of use, DNA extraction efficiency, toxicity, and transport and storage conditions

    Translational toxicology in setting occupational exposure limits for dusts and hazard classification – a critical evaluation of a recent approach to translate dust overload findings from rats to humans

    Get PDF
    Background We analyze the scientific basis and methodology used by the German MAK Commission in their recommendations for exposure limits and carcinogen classification of “granular biopersistent particles without known specific toxicity” (GBS). These recommendations are under review at the European Union level. We examine the scientific assumptions in an attempt to reproduce the results. MAK’s human equivalent concentrations (HECs) are based on a particle mass and on a volumetric model in which results from rat inhalation studies are translated to derive occupational exposure limits (OELs) and a carcinogen classification. Methods We followed the methods as proposed by the MAK Commission and Pauluhn 2011. We also examined key assumptions in the metrics, such as surface area of the human lung, deposition fractions of inhaled dusts, human clearance rates; and risk of lung cancer among workers, presumed to have some potential for lung overload, the physiological condition in rats associated with an increase in lung cancer risk. Results The MAK recommendations on exposure limits for GBS have numerous incorrect assumptions that adversely affect the final results. The procedures to derive the respirable occupational exposure limit (OEL) could not be reproduced, a finding raising considerable scientific uncertainty about the reliability of the recommendations. Moreover, the scientific basis of using the rat model is confounded by the fact that rats and humans show different cellular responses to inhaled particles as demonstrated by bronchoalveolar lavage (BAL) studies in both species. Conclusion Classifying all GBS as carcinogenic to humans based on rat inhalation studies in which lung overload leads to chronic inflammation and cancer is inappropriate. Studies of workers, who have been exposed to relevant levels of dust, have not indicated an increase in lung cancer risk. Using the methods proposed by the MAK, we were unable to reproduce the OEL for GBS recommended by the Commission, but identified substantial errors in the models. Considerable shortcomings in the use of lung surface area, clearance rates, deposition fractions; as well as using the mass and volumetric metrics as opposed to the particle surface area metric limit the scientific reliability of the proposed GBS OEL and carcinogen classification.International Carbon Black Associatio

    Intestinal microbiota in human health and disease: the impact of probiotics

    Get PDF
    The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the present state of the art on the intestinal microbiota with specific attention for the application of high-throughput functional microbiomic approaches to determine the contribution of the intestinal microbiota to human health. Moreover, we review the association between dysbiosis of the microbiota and both intestinal and extra-intestinal diseases. Finally, we discuss the potential of probiotic microorganism to modulate the intestinal microbiota and thereby contribute to health and well-being. The effects of probiotic consumption on the intestinal microbiota are addressed, as well as the development of tailor-made probiotics designed for specific aberrations that are associated with microbial dysbiosis

    Microbial shifts in the aging mouse gut

    Get PDF
    YesBackground: The changes that occur in the microbiome of aging individuals are unclear, especially in light of the imperfect correlation of frailty with age. Studies in older human subjects have reported subtle effects, but these results may be confounded by other variables that often change with age such as diet and place of residence. To test these associations in a more controlled model system, we examined the relationship between age, frailty, and the gut microbiome of female C57BL/6 J mice. Results: The frailty index, which is based on the evaluation of 31 clinical signs of deterioration in mice, showed a near-perfect correlation with age. We observed a statistically significant relationship between age and the taxonomic composition of the corresponding microbiome. Consistent with previous human studies, the Rikenellaceae family, which includes the Alistipes genus, was the most significantly overrepresented taxon within middle-aged and older mice. The functional profile of the mouse gut microbiome also varied with host age and frailty. Bacterial-encoded functions that were underrepresented in older mice included cobalamin (B12) and biotin (B7) biosynthesis, and bacterial SOS genes associated with DNA repair. Conversely, creatine degradation, associated with muscle wasting, was overrepresented within the gut microbiomes of the older mice, as were bacterial-encoded β-glucuronidases, which can influence drug-induced epithelial cell toxicity. Older mice also showed an overabundance of monosaccharide utilization genes relative to di-, oligo-, and polysaccharide utilization genes, which may have a substantial impact on gut homeostasis. Conclusion: We have identified taxonomic and functional patterns that correlate with age and frailty in the mouse microbiome. Differences in functions related to host nutrition and drug pharmacology vary in an age-dependent manner, suggesting that the availability and timing of essential functions may differ significantly with age and frailty. Future work with larger cohorts of mice will aim to separate the effects of age and frailty, and other factors.This work was supported by the Canadian Institutes of Health Research (CIHR) through an Emerging Team Grant to RGB, CIHR Operating Grants to Langille et al. Microbiome 2014, 2:50 Page 10 of 12 http://www.microbiomejournal.com/content/2/1/50 SEH (MOP 126018) and RAR (MOP 93718), and a CIHR Fellowship to MGIL. Infrastructure was supported by the Canada Foundation for Innovation through a grant to RGB. RGB also acknowledges the support of the Canada Research Chairs program
    corecore