5,075 research outputs found
A Multi-Parametric Imaging Investigation of the Response of C6 Glioma Xenografts to MLN0518 (Tandutinib) Treatment.
Angiogenesis, the development of new blood vessels, is essential for tumour growth; this process is stimulated by the secretion of numerous growth factors including platelet derived growth factor (PDGF). PDGF signalling, through its receptor platelet derived growth factor receptor (PDGFR), is involved in vessel maturation, stimulation of angiogenesis and upregulation of other angiogenic factors, including vascular endothelial growth factor (VEGF). PDGFR is a promising target for anti-cancer therapy because it is expressed on both tumour cells and stromal cells associated with the vasculature. MLN0518 (tandutinib) is a potent inhibitor of type III receptor tyrosine kinases that demonstrates activity against PDGFRα/β, FLT3 and c-KIT. In this study a multi-parametric MRI and histopathological approach was used to interrogate changes in vascular haemodynamics, structural response and hypoxia in C6 glioma xenografts in response to treatment with MLN0518. The doubling time of tumours in mice treated with MLN0518 was significantly longer than tumours in vehicle treated mice. The perfused vessel area, number of alpha smooth muscle actin positive vessels and hypoxic area in MLN0518 treated tumours were also significantly lower after 10 days treatment. These changes were not accompanied by alterations in vessel calibre or fractional blood volume as assessed using susceptibility contrast MRI. Histological assessment of vessel size and total perfused area did not demonstrate any change with treatment. Intrinsic susceptibility MRI did not reveal any difference in baseline R2* or carbogen-induced change in R2*. Dynamic contrast-enhanced MRI revealed anti-vascular effects of MLN0518 following 3 days treatment. Hypoxia confers chemo- and radio-resistance, and alongside PDGF, is implicated in evasive resistance to agents targeted against VEGF signalling. PDGFR antagonists may improve potency and efficacy of other therapeutics in combination. This study highlights the challenges of identifying appropriate quantitative imaging response biomarkers in heterogeneous models, particularly considering the multifaceted roles of angiogenic growth factors
Entanglement generation outside a Schwarzschild black hole and the Hawking effect
We examine the Hawking effect by studying the asymptotic entanglement of two
mutually independent two-level atoms placed at a fixed radial distance outside
a Schwarzschild black hole in the framework of open quantum systems. We treat
the two-atom system as an open quantum system in a bath of fluctuating
quantized massless scalar fields in vacuum and calculate the concurrence, a
measurement of entanglement, of the equilibrium state of the system at large
times, for the Unruh, Hartle-Hawking and Boulware vacua respectively. We find,
for all three vacuum cases, that the atoms turn out to be entangled even if
they are initially in a separable state as long as the system is not placed
right at the even horizon. Remarkably, only in the Unruh vacuum, will the
asymptotic entanglement be affected by the backscattering of the thermal
radiation off the space-time curvature. The effect of the back scatterings on
the asymptotic entanglement cancels in the Hartle-Hawking vacuum case.Comment: 15 pages, no figures, Revte
Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy
We present a class of exact analytic and static, spherically symmetric black
hole solutions in the semi-classical Einstein equations with Weyl anomaly. The
solutions have two branches, one is asymptotically flat and the other
asymptotically de Sitter. We study thermodynamic properties of the black hole
solutions and find that there exists a logarithmic correction to the well-known
Bekenstein-Hawking area entropy. The logarithmic term might come from non-local
terms in the effective action of gravity theories. The appearance of the
logarithmic term in the gravity side is quite important in the sense that with
this term one is able to compare black hole entropy up to the subleading order,
in the gravity side and in the microscopic statistical interpretation side.Comment: Revtex, 10 pages. v2: minor changes and to appear in JHE
Gleam: the GLAST Large Area Telescope Simulation Framework
This paper presents the simulation of the GLAST high energy gamma-ray
telescope. The simulation package, written in C++, is based on the Geant4
toolkit, and it is integrated into a general framework used to process events.
A detailed simulation of the electronic signals inside Silicon detectors has
been provided and it is used for the particle tracking, which is handled by a
dedicated software. A unique repository for the geometrical description of the
detector has been realized using the XML language and a C++ library to access
this information has been designed and implemented.Comment: 10 pages, Late
On Holographic description of the Kerr-Newman-AdS-dS black holes
In this paper, we study the holographic description of the generic
four-dimensional non-extremal Kerr-Newman-AdS-dS black holes. We find that if
focusing on the near-horizon region, for the massless scalar scattering in the
low-frequency limit, there exists hidden conformal symmetry on the solution
space. Similar to the Kerr case, this suggests that the Kerr-Newman-AdS-dS
black hole is dual to a two-dimensional CFT with central charges
 and temperatures
. The macroscopic Bekenstein-Hawking
entropy could be recovered from the microscopic counting in dual CFT via the
Cardy formula. Using the Minkowski prescription, we compute the real-time
correlators of the scalar, photon and graviton in near horizon geometry of near
extremal Kerr-AdS-dS black hole. In all these cases, the retarded Green's
function and the corresponding absorption cross section are in perfect match
with CFT prediction. We further discuss the low-frequency scattering of a
charged scalar by a Kerr-Newman-AdS-dS black hole and find the dual CFT
description.Comment: 22 pages; minor corrections, conlusion unchanged, references
  added;published versio
Preclinical transgenic and patient-derived xenograft models recapitulate the radiological features of human adamantinomatous craniopharyngioma
To assess the clinical relevance of transgenic and patient-derived xenograft models of adamantinomatous craniopharyngioma (ACP) using serial magnetic resonance imaging (MRI) and high resolution post-mortem microcomputed tomography (μ-CT), with correlation with histology and human ACP imaging. The growth patterns and radiological features of tumors arising in Hesx1(Cre/+) ;Ctnnb1(lox(ex3)/+) transgenic mice, and of patient-derived ACP xenografts implanted in the cerebral cortex, were monitored longitudinally in vivo with anatomical and functional MRI, and by ex vivo μ-CT at study end. Pathological correlates with hematoxylin and eosin stained sections were investigated. Early enlargement and heterogeneity of Hesx1(Cre/+) ;Ctnnb1(lox(ex3)/+) mouse pituitaries was evident at initial imaging at 8 weeks, which was followed by enlargement of a solid tumor, and development of cysts and hemorrhage. Tumors demonstrated MRI features that recapitulated those of human ACP, specifically, T1 -weighted signal enhancement in the solid tumor component following Gd-DTPA administration, and in some animals, hyperintense cysts on FLAIR and T1 -weighted images. Ex vivo μ-CT correlated with MRI findings and identified smaller cysts, which were confirmed by histology. Characteristic histological features, including wet keratin and calcification, were visible on μ-CT and verified by histological sections of patient-derived ACP xenografts. The Hesx1(Cre/+) ;Ctnnb1(lox(ex3)/+) transgenic mouse model and cerebral patient-derived ACP xenografts recapitulate a number of the key radiological features of the human disease and provide promising foundations for in vivo trials of novel therapeutics for the treatment of these tumors
Imaging tumour hypoxia with oxygen-enhanced MRI and BOLD MRI.
Hypoxia is known to be a poor prognostic indicator for nearly all solid tumours and also is predictive of treatment failure for radiotherapy, chemotherapy, surgery and targeted therapies. Imaging has potential to identify, spatially map and quantify tumour hypoxia prior to therapy, as well as track changes in hypoxia on treatment. At present no hypoxia imaging methods are available for routine clinical use. Research has largely focused on positron emission tomography (PET)-based techniques, but there is gathering evidence that MRI techniques may provide a practical and more readily translational alternative. In this review we focus on the potential for imaging hypoxia by measuring changes in longitudinal relaxation [R1; termed oxygen-enhanced MRI or tumour oxygenation level dependent (TOLD) MRI] and effective transverse relaxation [R2*; termed blood oxygenation level dependent (BOLD) MRI], induced by inhalation of either 100% oxygen or the radiosensitising hyperoxic gas carbogen. We explain the scientific principles behind oxygen-enhanced MRI and BOLD and discuss significant studies and their limitations. All imaging biomarkers require rigorous validation in order to translate into clinical use and the steps required to further develop oxygen-enhanced MRI and BOLD MRI into decision-making tools are discussed
Evidence for distinct coastal and offshore communities of bottlenose dolphins in the north east Atlantic.
Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations
Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis.
Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses
A new hammer to crack an old nut : interspecific competitive resource capture by plants is regulated by nutrient supply, not climate
Peer reviewedPublisher PD
- …
