3,401 research outputs found

    Knowledge Transfer in Audit Firms

    Get PDF
    Audit firms are knowledge-intensive organizations, and they can derive competitive advantage by transferring knowledge internally. We utilize the setting of the rapid audit market consolidation in China over the past twenty years to study knowledge transfer in audit firms. We employ a difference-in-difference approach and examine whether industry-specific knowledge transfers from the more competent to the less competent units after the merger. For clients in an industry audited by both merging audit firms, those audited by the less competent audit firm in that industry belong to the treatment group, while all other clients belong to the control group. Consistent with the existence of knowledge transfer, we find an economically significant improvement in audit quality (as reflected in a reduction in misstatements and an increase in modified audit opinions) for the treatment group relative to the control group in the same merged audit firm

    Grain boundary network evolution in electron-beam powder bed fusion nickel-based superalloy Inconel 738

    Full text link
    Additive manufacturing (AM) of alloys has attracted much attention in recent years for making geometrically complex engineering parts owing to its unique benefits, such as high flexibility and low waste. The in-service performance of AM parts is dependent on the microstructures and grain boundary networks formed during AM, which are often significantly different from their wrought counterparts. Characteristics such as grain size and morphology, texture, and the detailed grain boundary network are known to control various mechanical and corrosion properties. Advanced understanding on how AM parameters affect the formation of these microstructural characteristics is hence critical for optimising processing parameters to unlock superior properties. In this study, the difficult-to-weld nickel-based superalloy Inconel 738 was fabricated via electron-beam powder bed fusion (EPBF) following linear and random scanning strategies. Random scanning resulted in finer, less elongated, and crystallographically more random grains compared to the linear strategy. However, both scanning strategies achieve unique high grain structure stability up to 1250 ℃ due to the presence of carbides pinning the grain boundaries. Despite significant difference in texture and morphology, majority of grains terminated on {100} habit planes in both linear and random built samples. The results show potential for controlling grain boundary networks during EPBF by tuning scan strategies

    Decoupling heavy sparticles in Effective SUSY scenarios: Unification, Higgs masses and tachyon bounds

    Full text link
    Using two-loop renormalization group equations implementing the decoupling of heavy scalars, Effective SUSY scenarios are studied in the limit in which there is a single low energy Higgs field. Gauge coupling unification is shown to hold with similar or better precision than in standard MSSM scenarios. b-tau unification is examined, and Higgs masses are computed using the effective potential, including two-loop contributions from scalars. A 125 GeV Higgs is compatible with stops/sbottoms at around 300 GeV with non-universal boundary conditions at the scale of the heavy sparticles if some of the trilinear couplings at this scale take values of the order of 1-2 TeV; if more constrained boundary conditions inspired by msugra or gauge mediation are set at a higher scale, heavier colored sparticles are required in general. Finally, since the decoupled RG flow for third-generation scalar masses departs very significantly from the MSSM DR-bar one, tachyon bounds for light scalars are revisited and shown to be relaxed by up to a TeV or more.Comment: 35 pages, 17 figures. v2: Updated some scans, allowing for changes in sign of some parameters, minor improvements. v3: Typos corrected in formulae in the appendices, added some clarifying remarks about flavor mixing being ignore

    Stimulation of Na<sup>+</sup>/H<sup>+</sup> Exchanger Isoform 1 Promotes Microglial Migration

    Get PDF
    Regulation of microglial migration is not well understood. In this study, we proposed that Na+/H+ exchanger isoform 1 (NHE-1) is important in microglial migration. NHE-1 protein was co-localized with cytoskeletal protein ezrin in lamellipodia of microglia and maintained its more alkaline intracellular pH (pHi). Chemoattractant bradykinin (BK) stimulated microglial migration by increasing lamellipodial area and protrusion rate, but reducing lamellipodial persistence time. Interestingly, blocking NHE-1 activity with its potent inhibitor HOE 642 not only acidified microglia, abolished the BK-triggered dynamic changes of lamellipodia, but also reduced microglial motility and microchemotaxis in response to BK. In addition, NHE-1 activation resulted in intracellular Na+ loading as well as intracellular Ca2+ elevation mediated by stimulating reverse mode operation of Na+/Ca2+ exchange (NCXrev). Taken together, our study shows that NHE-1 protein is abundantly expressed in microglial lamellipodia and maintains alkaline pHi in response to BK stimulation. In addition, NHE-1 and NCXrev play a concerted role in BK-induced microglial migration via Na+ and Ca2+ signaling. © 2013 Shi et al

    Two-loop RGEs with Dirac gaugino masses

    Get PDF
    The set of renormalisation group equations to two loop order for general supersymmetric theories broken by soft and supersoft operators is completed. As an example, the explicit expressions for the RGEs in a Dirac gaugino extension of the (N)MSSM are presented.Comment: 10 pages + 24 pages of RGEs in appendix; no figure

    Regulation of caspase-3 processing by cIAP2 controls the switch between pro-inflammatory activation and cell death in microglia.

    Get PDF
    Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International Licence. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons licence, users will need to obtain permission from the licence holder to reproduce the material.The activation of microglia, resident immune cells of the central nervous system, and inflammation-mediated neurotoxicity are typical features of neurodegenerative diseases, for example, Alzheimer's and Parkinson's diseases. An unexpected role of caspase-3, commonly known to have executioner role for apoptosis, was uncovered in the microglia activation process. A central question emerging from this finding is what prevents caspase-3 during the microglia activation from killing those cells? Caspase-3 activation occurs as a two-step process, where the zymogen is first cleaved by upstream caspases, such as caspase-8, to form intermediate, yet still active, p19/p12 complex; thereafter, autocatalytic processing generates the fully mature p17/p12 form of the enzyme. Here, we show that the induction of cellular inhibitor of apoptosis protein 2 (cIAP2) expression upon microglia activation prevents the conversion of caspase-3 p19 subunit to p17 subunit and is responsible for restraining caspase-3 in terms of activity and subcellular localization. We demonstrate that counteracting the repressive effect of cIAP2 on caspase-3 activation, using small interfering RNA targeting cIAP2 or a SMAC mimetic such as the BV6 compound, reduced the pro-inflammatory activation of microglia cells and promoted their death. We propose that the different caspase-3 functions in microglia, and potentially other cell types, reside in the active caspase-3 complexes formed. These results also could indicate cIAP2 as a possible therapeutic target to modulate microglia pro-inflammatory activation and associated neurotoxicity observed in neurodegenerative disorders

    Decentralized Estimation over Orthogonal Multiple-access Fading Channels in Wireless Sensor Networks - Optimal and Suboptimal Estimators

    Get PDF
    Optimal and suboptimal decentralized estimators in wireless sensor networks (WSNs) over orthogonal multiple-access fading channels are studied in this paper. Considering multiple-bit quantization before digital transmission, we develop maximum likelihood estimators (MLEs) with both known and unknown channel state information (CSI). When training symbols are available, we derive a MLE that is a special case of the MLE with unknown CSI. It implicitly uses the training symbols to estimate the channel coefficients and exploits the estimated CSI in an optimal way. To reduce the computational complexity, we propose suboptimal estimators. These estimators exploit both signal and data level redundant information to improve the estimation performance. The proposed MLEs reduce to traditional fusion based or diversity based estimators when communications or observations are perfect. By introducing a general message function, the proposed estimators can be applied when various analog or digital transmission schemes are used. The simulations show that the estimators using digital communications with multiple-bit quantization outperform the estimator using analog-and-forwarding transmission in fading channels. When considering the total bandwidth and energy constraints, the MLE using multiple-bit quantization is superior to that using binary quantization at medium and high observation signal-to-noise ratio levels

    Translation and validation of non-English versions of the Ankylosing Spondylitis Quality of Life (ASQOL) questionnaire

    Get PDF
    BACKGROUND: The Ankylosing Spondylitis Quality of Life (ASQOL) questionnaire is a unidimensional, disease-specific measure developed in the UK and the Netherlands. This study describes its adaptation into other languages. METHODS: The UK English ASQOL was translated into US English; Canadian French and English; French; German; Italian; Spanish; and Swedish (dual-panel methods). Cognitive debriefing interviews were conducted with AS patients. Psychometric/scaling properties were assessed using data from two Phase III studies of adalimumab. Baseline and Week-2 data were used to assess test-retest reliability. Validity was determined by correlation of ASQOL with SF-36 and BASFI and by discriminative ability of ASQOL based on disease severity. Item response theory (Rasch model) was used to test ASQOL's scaling properties. RESULTS: Cognitive debriefing showed the new ASQOL versions to be clear, relevant and comprehensive. Sample sizes varied, but were sufficient for: psychometric/scaling assessment for US English and Canadian English; psychometric but not scaling analyses for German; and preliminary evidence of these properties for the remaining languages. Test-retest reliability and Cronbach's alpha coefficients were high: US English (0.85, 0.85), Canadian English (0.87, 0.86), and German (0.77, 0.79). Correlations of ASQOL with SF-36 and BASFI for US English, Canadian English, and German measures were moderate, but ASQOL discriminated between patients based on perceived disease severities (p < 0.01). Results were comparable for the other languages. US English and Canadian English exhibited fit to the Rasch model (non-significant p-values: 0.54, 0.68), confirming unidimensionality. CONCLUSION: The ASQOL was successfully translated into all eight languages. Psychometric properties were excellent for US English, Canadian English, and German, and extremely promising for the other languages

    Tantalum disulfide quantum dots: preparation, structure, and properties

    Get PDF
    202006 bcmaVersion of RecordPublishe
    corecore