41 research outputs found

    Trna-derived fragments (Trfs): Emerging new roles for an ancient RNA in the regulation of gene expression

    Full text link
    © 2015 by the authors; licensee MDPI, Basel, Switzerland. This review will summarise the recent discoveries and current state of research on short noncoding RNAs derived from tRNAs—known as tRNA-derived fragments (tRFs). It will describe the features of the known subtypes of these RNAs; including sequence characteristics, protein interactors, expression characteristics, biogenesis, and similarity to canonical miRNA pathways. Also their role in regulating gene expression; including mediating translational suppression, will be discussed. We also highlight their potential use as biomarkers, functions in gene regulation and links to disease. Finally, this review will speculate as to the origin and rationale for the conservation of this novel class of noncoding RNAs amongst both prokaryotes and eukaryotes

    The human Piwi protein Hiwi2 associates with tRNA-derived piRNAs in somatic cells

    Get PDF
    The Piwi-piRNA pathway is active in animal germ cells where its functions are required for germ cell maintenance and gamete differentiation. Piwi proteins and piRNAs have been detected outside germline tissue in multiple phyla, but activity of the pathway in mammalian somatic cells has been little explored. In particular, Piwi expression has been observed in cancer cells, but nothing is known about the piRNA partners or the function of the system in these cells. We have surveyed the expression of the three human Piwi genes, Hiwi, Hili and Hiwi2, in multiple normal tissues and cancer cell lines. We find that Hiwi2 is ubiquitously expressed; in cancer cells the protein is largely restricted to the cytoplasm and is associated with translating ribosomes. Immunoprecipitation of Hiwi2 from MDAMB231 cancer cells enriches for piRNAs that are predominantly derived from processed tRNAs and expressed genes, species which can also be found in adult human testis. Our studies indicate that a Piwi-piRNA pathway is present in human somatic cells, with an uncharacterised function linked to translation. Taking this evidence together with evidence from primitive organisms, we propose that this somatic function of the pathway predates the germline functions of the pathway in modern animals. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research

    Conserved and highly expressed tRNA derived fragments in zebrafish

    Get PDF
    Background: Small non-coding RNAs (sncRNAs) are a class of transcripts implicated in several eukaryotic regulatory mechanisms, namely gene silencing and chromatin regulation. Despite significant progress in their identification by next generation sequencing (NGS) we are still far from understanding their full diversity and functional repertoire. Results: Here we report the identification of tRNA derived fragments (tRFs) by NGS of the sncRNA fraction of zebrafish. The tRFs identified are 18–30 nt long, are derived from specific 5′ and 3′ processing of mature tRNAs and are differentially expressed during development and in differentiated tissues, suggesting that they are likely produced by specific processing rather than random degradation of tRNAs. We further show that a highly expressed tRF (5′tRF-ProCGG) is cleaved in vitro by Dicer and has silencing ability, indicating that it can enter the RNAi pathway. A computational analysis of zebrafish tRFs shows that they are conserved among vertebrates and mining of publicly available datasets reveals that some 5′tRFs are differentially expressed in disease conditions, namely during infection and colorectal cancer. Conclusions: tRFs constitute a class of conserved regulatory RNAs in vertebrates and may be involved in mechanisms of genome regulation and in some diseases. Keywords: tRNA derived fragments, Zebrafish, Small non coding RNAs, tRNAspublishe

    The potential biomarkers in predicting pathologic response of breast cancer to three different chemotherapy regimens: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preoperative chemotherapy (PCT) has become the standard of care in locally advanced breast cancer. The identification of patient-specific tumor characteristics that can improve the ability to predict response to therapy would help optimize treatment, improve treatment outcomes, and avoid unnecessary exposure to potential toxicities. This study is to determine whether selected biomarkers could predict pathologic response (PR) of breast tumors to three different PCT regimens, and to identify a subset of patients who would benefit from a given type of treatment.</p> <p>Methods</p> <p>118 patients with primary breast tumor were identified and three PCT regimens including DEC (docetaxel+epirubicin+cyclophosphamide), VFC (vinorelbine/vincristine+5-fluorouracil+cyclophosphamide) and EFC (epirubicin+5-fluorouracil+cyclophosphamide) were investigated. Expression of steroid receptors, HER2, P-gp, MRP, GST-pi and Topo-II was evaluated by immunohistochemical scoring on tumor tissues obtained before and after PCT. The PR of breast carcinoma was graded according to Sataloff's classification. Chi square test, logistic regression and Cochran-Mantel-Haenszel assay were performed to determine the association between biomarkers and PR, as well as the effectiveness of each regimen on induction of PR.</p> <p>Results</p> <p>There was a clear-cut correlation between the expression of ER and decreased PR to PCT in all three different regimens (<it>p </it>< 0.05). HER2 expression is significantly associated with increased PR in DEC regimen (<it>p </it>< 0.05), but not predictive for PR in EFC and VFC groups. No significant correlation was found between biomarkers PgR, Topo-II, P-gp, MRP or GST-pi and PR to any tested PCT regimen. After adjusted by a stratification variable of ER or HER2, DEC regimen was more effective in inducing PR in comparison with VFC and EFC regimens.</p> <p>Conclusion</p> <p>ER is an independent predictive factor for PR to PCT regimens including DEC, VFC and EFC in primary breast tumors, while HER2 is only predictive for DEC regimen. Expression of PgR, Topo-II, P-gp, MRP and GST-pi are not predictive for PR to any PCT regimens investigated. Results obtained in this clinical study may be helpful for the selection of appropriate treatments for breast cancer patients.</p

    The long and the short of it: the MDM4 tail so far

    Get PDF
    The mouse double minute 4 (MDM4) is emerging from the shadow of its more famous relative MDM2 and is starting to steal the limelight, largely due to its therapeutic possibilities. MDM4 is a vital regulator of the tumor suppressor p53. It restricts p53 transcriptional activity and also, at least in development, facilitates MDM2's E3 ligase activity toward p53. These functions of MDM4 are critical for normal cell function and a proper response to stress. Their importance for proper cell maintenance and proliferation identifies them as a risk for deregulation associated with the uncontrolled growth of cancer. MDM4 tails are vital for its function, where its N-terminus transactivation domain engages p53 and its C-terminus RING domain binds to MDM2. In this review, we highlight recently identified cellular functions of MDM4 and survey emerging therapies directed to correcting its dysregulation in disease

    Primary and metastatic breast tumors cross-talk to influence immunotherapy responses

    Get PDF
    The presence of a tumor can alter host immunity systematically. The immune-tumor interaction in one site may impact the local immune microenvironment in distal tissues through the circulation, and therefore influence the efficacy of immunotherapies to distant metastases. Improved understanding of the immune-tumor interactions during immunotherapy treatment in a metastatic setting may enhance the efficacy of current immunotherapies. Here we investigate the response to αPD-1/αCTLA4 and trimAb (αDR5, α4-1BB, αCD40) of 67NR murine breast tumors grown simultaneously in the mammary fat pad (MFP) and lung, a common site of breast cancer metastasis, and compared to tumors grown in isolation. Lung tumors present in isolation were resistant to both therapies. However, in MFP and lung tumor-bearing mice, the presence of a MFP tumor could increase lung tumor response to immunotherapy and decrease the number of lung metastases, leading to complete eradication of lung tumors in a proportion of mice. The MFP tumor influence on lung metastases was mediated by CD8+ T cells, as CD8+ T cell depletion abolished the difference in lung metastases. Furthermore, mice with concomitant MFP and lung tumors had increased tumor specific, effector CD8+ T cells infiltration in the lungs. Thus, we propose a model where tumors in an immunogenic location can give rise to systemic anti-tumor CD8+ T cell responses that could be utilized to target metastatic tumors. These results highlight the requirement for clinical consideration of cross-talk between primary and metastatic tumors for effective immunotherapy for cancers otherwise resistant to immunotherapy
    corecore