5,973 research outputs found

    Effect of Nanosilica on the Sulfate Attack Resistivity of Cement Mortar

    Get PDF
    The effect of nanosilica on the sulfate attack resistivity of cement mortar was investigated through study on the mechanical property evolution and the length change of the cement mortar under 5 wt.% sodium sulfate for 6 months. Meanwhile, the effects were compared with those of fly ash-replacement mortar. Results showed that by taking the advantages of nanosilica and fly ash in improving the property of cement mortar at early and later ages, the sulfate attack resistance of cement mortar can be enhanced in mechanical property increase and expansion reduction. Further, it implies that a combination of both pozzolans could enhance the sulfate attack resistivity of cement-based materials

    Structure and function of the thermostable L-asparaginase from Thermococcus kodakarensis.

    Get PDF
    L-Asparaginases catalyse the hydrolysis of asparagine to aspartic acid and ammonia. In addition, L-asparaginase is involved in the biosynthesis of amino acids such as lysine, methionine and threonine. These enzymes have been used as chemotherapeutic agents for the treatment of acute lymphoblastic leukaemia and other haematopoietic malignancies since the tumour cells cannot synthesize sufficient L-asparagine and are thus killed by deprivation of this amino acid. L-Asparaginases are also used in the food industry and have potential in the development of biosensors, for example for asparagine levels in leukaemia. The thermostable type I L-asparaginase from Thermococcus kodakarensis (TkA) is composed of 328 amino acids and forms homodimers in solution, with the highest catalytic activity being observed at pH 9.5 and 85°C. It has a Km value of 5.5 mM for L-asparagine, with no glutaminase activity being observed. The crystal structure of TkA has been determined at 2.18 Å resolution, confirming the presence of two α/β domains connected by a short linker region. The N-terminal domain contains a highly flexible β-hairpin which adopts `open' and `closed' conformations in different subunits of the solved TkA structure. In previously solved L-asparaginase structures this β-hairpin was only visible when in the `closed' conformation, whilst it is characterized with good electron density in all of the subunits of the TkA structure. A phosphate anion resides at the active site, which is formed by residues from both of the neighbouring monomers in the dimer. The high thermostability of TkA is attributed to the high arginine and salt-bridge content when compared with related mesophilic enzymes

    Structure of the 2,4'-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP.

    Get PDF
    The enzyme 2,4'-dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2,4'-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C-C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X-ray structure of a DAD enzyme from the Gram-negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active-site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α-hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in the predominantly hydrophobic active-site pocket where it undergoes peroxide radical-mediated heterolysis

    Structure and function of the type III pullulan hydrolase from Thermococcus kodakarensis

    Get PDF
    Pullulan-hydrolysing enzymes, more commonly known as debranching enzymes for starch and other polysaccharides, are of great interest and have been widely used in the starch-saccharification industry. Type III pullulan hydrolase from Thermococcus kodakarensis (TK-PUL) possesses both pullulanase and α-amylase activities. Until now, only two enzymes in this class, which are capable of hydrolysing both α-1,4- and α-1,6-glycosidic bonds in pullulan to produce a mixture of maltose, panose and maltotriose, have been described. TK-PUL shows highest activity in the temperature range 95–100°C and has a pH optimum in the range 3.5–4.2. Its unique ability to hydrolyse maltotriose into maltose and glucose has not been reported for other homologous enzymes. The crystal structure of TK-PUL has been determined at a resolution of 2.8 Å and represents the first analysis of a type III pullulan hydrolyse. The structure reveals that the last part of the N-terminal domain and the C-terminal domain are significantly different from homologous structures. In addition, the loop regions at the active-site end of the central catalytic domain are quite different. The enzyme has a well defined calcium-binding site and possesses a rare vicinal disulfide bridge. The thermostability of TK-PUL and its homologues may be attributable to several factors, including the increased content of salt bridges, helical segments, Pro, Arg and Tyr residues and the decreased content of serine

    Cloning and sequence analysis of Sox genes in a tetraploid cyprinid fish, Tor douronensis

    Get PDF
    A PCR survey for Sox genes in a young tetraploid fish Tor douronensis (Teleostei: Cyprinidae) was performed to access the evolutionary fates of important functional genes after genome duplication caused by polyploidization event. Totally 13 Sox genes were obtained in Tor douronensis, which represent SoxB, SoxC and SoxE groups. Phylogenetic analysis of Sox genes in Tor douronensis provided evidence for fish-specific genome duplication, and suggested that Sox19 might be a teleost specific Sox gene member. Sequence analysis revealed most of the nucleotide substitutions between duplicated copies of Sox genes caused by tetraploidization event or their orthologues in other species are silent substitutions. It would appear that the sequences are under purifying selective pressure, strongly suggesting that they represent functional genes and supporting selection against all null allele at either of two duplicated loci of Sox4a, Sox9a and Sox9b. Surprising variations of the intron length and similarities of two duplicated copies of Sox9a and Sox9b, suggest that Tor douronensis might be an allotetraploidy.A PCR survey for Sox genes in a young tetraploid fish Tor douronensis (Teleostei: Cyprinidae) was performed to access the evolutionary fates of important functional genes after genome duplication caused by polyploidization event. Totally 13 Sox genes were obtained in Tor douronensis, which represent SoxB, SoxC and SoxE groups. Phylogenetic analysis of Sox genes in Tor douronensis provided evidence for fish-specific genome duplication, and suggested that Sox19 might be a teleost specific Sox gene member. Sequence analysis revealed most of the nucleotide substitutions between duplicated copies of Sox genes caused by tetraploidization event or their orthologues in other species are silent substitutions. It would appear that the sequences are under purifying selective pressure, strongly suggesting that they represent functional genes and supporting selection against all null allele at either of two duplicated loci of Sox4a, Sox9a and Sox9b. Surprising variations of the intron length and similarities of two duplicated copies of Sox9a and Sox9b, suggest that Tor douronensis might be an allotetraploidy

    The 1.1 angstrom resolution structure of a periplasmic phosphate-binding protein from Stenotrophomonas maltophilia: a crystallization contaminant identified by molecular replacement using the entire Protein Data Bank

    Get PDF
    During efforts to crystallize the enzyme 2,4-dihydroxyacetophenone dioxygenase (DAD) from Alcaligenes sp. 4HAP, a small number of strongly diffracting protein crystals were obtained after two years of crystal growth in one condition. The crystals diffracted synchrotron radiation to almost 1.0 Å resolution and were, until recently, assumed to be formed by the DAD protein. However, when another crystal form of this enzyme was eventually solved at lower resolution, molecular replacement using this new structure as the search model did not give a convincing solution with the original atomic resolution data set. Hence, it was considered that these crystals might have arisen from a protein impurity, although molecular replacement using the structures of common crystallization contaminants as search models again failed. A script to perform molecular replacement using MOLREP in which the first chain of every structure in the PDB was used as a search model was run on a multi-core cluster. This identified a number of prokaryotic phosphate-binding proteins as scoring highly in the MOLREP peak lists. Calculation of an electron-density map at 1.1 Å resolution based on the solution obtained with PDB entry 2q9t allowed most of the amino acids to be identified visually and built into the model. A BLAST search then indicated that the molecule was most probably a phosphate-binding protein from Stenotrophomonas maltophilia (UniProt ID B4SL31; gene ID Smal_2208), and fitting of the corresponding sequence to the atomic resolution map fully corroborated this. Proteins in this family have been linked to the virulence of antibiotic-resistant strains of pathogenic bacteria and with biofilm formation. The structure of the S. maltophilia protein has been refined to an R factor of 10.15% and an Rfree of 12.46% at 1.1 Å resolution. The molecule adopts the type II periplasmic binding protein (PBP) fold with a number of extensively elaborated loop regions. A fully dehydrated phosphate anion is bound tightly between the two domains of the protein and interacts with conserved residues and a number of helix dipoles

    Solving integral equations in η3π\eta\to 3\pi

    Full text link
    A dispersive analysis of η3π\eta\to 3\pi decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: i) The angular averages of the amplitudes need to be performed along a complicated path in the complex plane. ii) The averaged amplitudes develop singularities along the path of integration in the dispersive representation of the full amplitudes. It is a delicate affair to handle these singularities properly, and independent checks of the obtained solutions are demanding and time consuming. In the present article, we propose a solution method that avoids these difficulties. It is based on a simple deformation of the path of integration in the dispersive representation (not in the angular average). Numerical solutions are then obtained rather straightforwardly. We expect that the method also works for ω3π\omega\to 3\pi.Comment: 11 pages, 10 Figures. Version accepted for publication in EPJC. The ancillary files contain an updated set of fundamental solutions. The numerical differences to the former set are tiny, see the READMEv2 file for detail

    Structural studies of domain movement in active-site mutants of porphobilinogen deaminase from Bacillus megaterium.

    Get PDF
    The enzyme porphobilinogen deaminase (PBGD) is one of the key enzymes in tetrapyrrole biosynthesis. It catalyses the formation of a linear tetrapyrrole from four molecules of the substrate porphobilinogen (PBG). It has a dipyrromethane cofactor (DPM) in the active site which is covalently linked to a conserved cysteine residue through a thioether bridge. The substrate molecules are linked to the cofactor in a stepwise head-to-tail manner during the reaction, which is catalysed by a conserved aspartate residue: Asp82 in the B. megaterium enzyme. Three mutations have been made affecting Asp82 (D82A, D82E and D82N) and their crystal structures have been determined at resolutions of 2.7, 1.8 and 1.9 Å, respectively. These structures reveal that whilst the D82E mutant possesses the DPM cofactor, in the D82N and D82A mutants the cofactor is likely to be missing, incompletely assembled or disordered. Comparison of the mutant PBGD structures with that of the wild-type enzyme shows that there are significant domain movements and suggests that the enzyme adopts `open' and `closed' conformations, potentially in response to substrate binding
    corecore