40 research outputs found

    Size constancy in bat biosonar?

    Get PDF
    Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed "size constancy". It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the 'sonar aperture', i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats

    Coding “What” and “When” in the Archer Fish Retina

    Get PDF
    Traditionally, the information content of the neural response is quantified using statistics of the responses relative to stimulus onset time with the assumption that the brain uses onset time to infer stimulus identity. However, stimulus onset time must also be estimated by the brain, making the utility of such an approach questionable. How can stimulus onset be estimated from the neural responses with sufficient accuracy to ensure reliable stimulus identification? We address this question using the framework of colour coding by the archer fish retinal ganglion cell. We found that stimulus identity, “what”, can be estimated from the responses of best single cells with an accuracy comparable to that of the animal's psychophysical estimation. However, to extract this information, an accurate estimation of stimulus onset is essential. We show that stimulus onset time, “when”, can be estimated using a linear-nonlinear readout mechanism that requires the response of a population of 100 cells. Thus, stimulus onset time can be estimated using a relatively simple readout. However, large nerve cell populations are required to achieve sufficient accuracy

    Encoding of Temporal Information by Timing, Rate, and Place in Cat Auditory Cortex

    Get PDF
    A central goal in auditory neuroscience is to understand the neural coding of species-specific communication and human speech sounds. Low-rate repetitive sounds are elemental features of communication sounds, and core auditory cortical regions have been implicated in processing these information-bearing elements. Repetitive sounds could be encoded by at least three neural response properties: 1) the event-locked spike-timing precision, 2) the mean firing rate, and 3) the interspike interval (ISI). To determine how well these response aspects capture information about the repetition rate stimulus, we measured local group responses of cortical neurons in cat anterior auditory field (AAF) to click trains and calculated their mutual information based on these different codes. ISIs of the multiunit responses carried substantially higher information about low repetition rates than either spike-timing precision or firing rate. Combining firing rate and ISI codes was synergistic and captured modestly more repetition information. Spatial distribution analyses showed distinct local clustering properties for each encoding scheme for repetition information indicative of a place code. Diversity in local processing emphasis and distribution of different repetition rate codes across AAF may give rise to concurrent feed-forward processing streams that contribute differently to higher-order sound analysis

    Inequitable walking conditions among older people: examining the interrelationship of neighbourhood socio-economic status and urban form using a comparative case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Supportive neighbourhood walking conditions are particularly important for older people as they age and who, as a group, prefer walking as a form of physical activity. Urban form and socio-economic status (SES) can influence neighbourhood walking behaviour. The objectives of this study were: a) to examine how urban form and neighbourhood SES inter-relate to affect the experiences of older people who walk in their neighbourhoods; b) to examine differences among neighbourhood stakeholder key informant perspectives on socio-political processes that shape the walkability of neighbourhood environments.</p> <p>Methods</p> <p>An embedded comparative case study examined differences among four Ottawa neighbourhoods that were purposefully selected to provide contrasts on urban form (inner-urban versus suburban) and SES (higher versus lower). Qualitative data collected from 75 older walkers and 19 neighbourhood key informants, as well as quantitative indicators were compared on the two axes of urban form and SES among the four neighbourhoods.</p> <p>Results and discussion</p> <p>Examining the inter-relationship of neighbourhood SES and urban form characteristics on older people's walking experiences indicated that urban form differences were accentuated positively in higher SES neighbourhoods and negatively in lower SES neighbourhoods. Older people in lower SES neighbourhoods were more affected by traffic hazards and more reliant on public transit compared to their higher SES counterparts. In higher SES neighbourhoods the disadvantages of traffic in the inner-urban neighbourhood and lack of commercial destinations in the suburban neighbourhood were partially offset by other factors including neighbourhood aesthetics. Key informant descriptions of the socio-political process highlighted how lower SES neighbourhoods may face greater challenges in creating walkable places. These differences pertained to the size of neighbourhood associations, relationships with political representatives, accessing information and salient neighbourhood association issues. Findings provide evidence of inequitable walking environments.</p> <p>Conclusion</p> <p>Future research on walking must consider urban form-SES inter-relationships and further examine the equitable distribution of walking conditions as well as the socio-political processes driving these conditions. There is a need for municipal governments to monitor differences in walking conditions among higher and lower SES neighbourhoods, to be receptive to the needs of lower SES neighbourhood and to ensure that policy decisions are taken to address inequitable walking conditions.</p
    corecore