5,324 research outputs found

    Effects of heavy modes on vacuum stability in supersymmetric theories

    Get PDF
    We study the effects induced by heavy fields on the masses of light fields in supersymmetric theories, under the assumption that the heavy mass scale is much higher than the supersymmetry breaking scale. We show that the square-masses of light scalar fields can get two different types of significant corrections when a heavy multiplet is integrated out. The first is an indirect level-repulsion effect, which may arise from heavy chiral multiplets and is always negative. The second is a direct coupling contribution, which may arise from heavy vector multiplets and can have any sign. We then apply these results to the sGoldstino mass and study the implications for the vacuum metastability condition. We find that the correction from heavy chiral multiplets is always negative and tends to compromise vacuum metastability, whereas the contribution from heavy vector multiplets is always positive and tends on the contrary to reinforce it. These two effects are controlled respectively by Yukawa couplings and gauge charges, which mix one heavy and two light fields respectively in the superpotential and the Kahler potential. Finally we also comment on similar effects induced in soft scalar masses when the heavy multiplets couple both to the visible and the hidden sector.Comment: LaTex, 24 pages, no figures; v2 some comments and references adde

    A Comparison of Supersymmetry Breaking and Mediation Mechanisms

    Full text link
    We give a unified treatment of different models of supersymmetry breaking and mediation from a four dimensional effective field theory standpoint. In particular a comparison between GMSB and various gravity mediated versions of SUSY breaking shows that, once the former is embedded within a SUGRA framework, there is no particular advantage to that mechanism from the point of view of FCNC suppression. We point out the difficulties of all these scenarios - in particular the cosmological modulus problem. We end with a discussion of possible string theory realizations.Comment: Added clarifications and references, 20 page

    DeepCompass: AI-driven Location-Orientation Synchronization for Navigating Platforms

    Full text link
    In current navigating platforms, the user's orientation is typically estimated based on the difference between two consecutive locations. In other words, the orientation cannot be identified until the second location is taken. This asynchronous location-orientation identification often leads to our real-life question: Why does my navigator tell the wrong direction of my car at the beginning? We propose DeepCompass to identify the user's orientation by bridging the gap between the street-view and the user-view images. First, we explore suitable model architectures and design corresponding input configuration. Second, we demonstrate artificial transformation techniques (e.g., style transfer and road segmentation) to minimize the disparity between the street-view and the user's real-time experience. We evaluate DeepCompass with extensive evaluation in various driving conditions. DeepCompass does not require additional hardware and is also not susceptible to external interference, in contrast to magnetometer-based navigator. This highlights the potential of DeepCompass as an add-on to existing sensor-based orientation detection methods.Comment: 7page with 3 supplemental page

    Phenomenological Implications of Deflected Mirage Mediation: Comparison with Mirage Mediation

    Get PDF
    We compare the collider phenomenology of mirage mediation and deflected mirage mediation, which are two recently proposed "mixed" supersymmetry breaking scenarios motivated from string compactifications. The scenarios differ in that deflected mirage mediation includes contributions from gauge mediation in addition to the contributions from gravity mediation and anomaly mediation also present in mirage mediation. The threshold effects from gauge mediation can drastically alter the low energy spectrum from that of pure mirage mediation models, resulting in some cases in a squeezed gaugino spectrum and a gluino that is much lighter than other colored superpartners. We provide several benchmark deflected mirage mediation models and construct model lines as a function of the gauge mediation contributions, and discuss their discovery potential at the LHC.Comment: 29 pages, 9 figure

    The clinical usefulness of initial serum procalcitonin as an aggravation predictor in a hepatobiliary tract infection at emergency department

    Get PDF
    Background and Objectives: The ability to predict future clinical deterioration early in patients who present to an emergency care center with a hepatobiliary tract infection is difficult. We studied the clinical usefulness of the initial serum levels of procalcitonin in a hepatobiliary tract infection as an indicator for predicting aggravation in the early stages.Methods: Of the patients who presented with the clinical symptoms of a hepatobiliary tract infection, 99 were diagnosed with a hepatobiliary tract infection by imaging studies and subsequently enrolled in the study. Laboratory tests were obtained in the early stage of disease after presentation to an emergency care center. We assessed and compared the serum levels of many early inflammatory markers (white blood cell [WBC] counts, C‑reactive protein and procalcitonin) between patients whose symptoms were initially stable upon arrival to an emergency care center but then deteriorated to, those whose symptoms remained consistently stable. Thus, we examined if the above serum markers are useful in predicting the possibility of future symptom aggravation.Results: Of a total of 99 patients, 27 were assigned to the symptom aggravation group. The serum levels of WBC counts and C‑reactive protein in the aggravation group were elevated. However, the median value (interquartile range) of procalcitonin was relatively increased at 2.28 (0.41–7.84 ng/ml), demonstrating a significant difference.Conclusions: In conclusion, initial serum levels of procalcitonin might be used as an indicator for aggravation in patients with hepatobiliary tract infection at the emergency department, even though there is hemodynamic stability.Key words: Hepatobiliary tract, infection, procalcitoni

    Two-loop RGEs with Dirac gaugino masses

    Get PDF
    The set of renormalisation group equations to two loop order for general supersymmetric theories broken by soft and supersoft operators is completed. As an example, the explicit expressions for the RGEs in a Dirac gaugino extension of the (N)MSSM are presented.Comment: 10 pages + 24 pages of RGEs in appendix; no figure

    On the Effective Description of Large Volume Compactifications

    Full text link
    We study the reliability of the Two-Step moduli stabilization in the type-IIB Large Volume Scenarios with matter and gauge interactions. The general analysis is based on a family of N=1 Supergravity models with a factorizable Kaehler invariant function, where the decoupling between two sets of fields without a mass hierarchy is easily understood. For the Large Volume Scenario particular analyses are performed for explicit models, one of such developed for the first time here, finding that the simplified version, where the Dilaton and Complex structure moduli are regarded as frozen by a previous stabilization, is a reliable supersymmetric description whenever the neglected fields stand at their leading F-flatness conditions and be neutral. The terms missed by the simplified approach are either suppressed by powers of the Calabi-Yau volume, or are higher order operators in the matter fields, and then irrelevant for the moduli stabilization rocedure. Although the power of the volume suppressing such corrections depends on the particular model, up to the mass level it is independent of the modular weight for the matter fields. This at least for the models studied here but we give arguments to expect the same in general. These claims are checked through numerical examples. We discuss how the factorizable models present a context where despite the lack of a hierarchy with the supersymmetry breaking scale, the effective theory still has a supersymmetric description. This can be understood from the fact that it is possible to find vanishing solution for the auxiliary components of the fields being integrated out, independently of the remaining dynamics. Our results settle down the question on the reliability of the way the Dilaton and Complex structure are treated in type-IIB compactifications with large compact manifold volumina.Comment: 23 pages + 2 appendices (38 pages total). v2: minor improvements, typos fixed. Version published in JHE

    (Extra)Ordinary Gauge/Anomaly Mediation

    Full text link
    We study anomaly mediation models with gauge mediation effects from messengers which have a general renormalizable mass matrix with a supersymmetry-breaking spurion. Our models lead to a rich structure of supersymmetry breaking terms in the visible sector. We derive sum rules among the soft scalar masses for each generation. Our sum rules for the first and second generations are the same as those in general gauge mediation, but the sum rule for the third generation is different because of the top Yukawa coupling. We find the parameter space where the tachyonic slepton problem is solved. We also explore the case in which gauge mediation causes the anomalously small gaugino masses. Since anomaly mediation effects on the gaugino masses exist, we can obtain viable mass spectrum of the visible sector fields.Comment: 24 pages, 10 figure

    Physician and nurse knowledge about patient radiation exposure in the emergency department

    Get PDF
    Background: Imaging methods that use ionizing radiation in emergency departments (EDs) have increased with advances in radiological diagnostic methods. Physician and nurse awareness of the radiation dose in the ED and the associated cancer risks to which the patients are exposed were surveyed with a questionnaire.Methods: A total of 191 subjects in six EDs participated in this study. ED physicians and ED nurses were asked about the risks and the radiation doses of imaging methods ordered in the ED. The differences between the two groups were compared using Student’s t‑test for continuous variables. A Fisher’s exact and Chi‑squared tests were used for categorical variables.Results: A total of 82 ED physicians and 109 ED nurses completed the questionnaire; 38 (46.3%) physicians and 8 (7.3%) nurses correctly answered the question about the chest X‑ray radiation dose. A question about the number of chest X‑rays that is equivalent to the dose of a pelvic X‑ray was answered correctly by 5 (6.1%) physicians and 9 (8.3%) nurses (P = 0.571). Questions regarding abdominal computed tomography (CT), chest CT, brain CT, abdominal ultrasonography, and brain magnetic resonance imaging were answered correctly more frequently by the physician group than the nurse group (P < 0.05). The risk of developing cancer over a lifetime due to a brain CT was correctly answered by 21 (25.6%) physicians and 30 (27.5%) nurses (P = 0.170). A similar question regarding abdominal CT was correctly answered by 21 (25.6%) physicians and 42 (38.5%) nurses (P = 0.127).Conclusions: Knowledge of the radiation exposure of radiology examinations was lower in nurses than physicians, but knowledge was poor in both groups. ED physicians and nurses should be educated about radiation exposure and cancer risks associated with various diagnostic radiological methods.Keywords: Diagnostic imaging, emergencies, radiation dosag
    • 

    corecore