36,345 research outputs found

    Parametric Competition in non-autonomous Hamiltonian Systems

    Full text link
    In this work we use the formalism of chord functions (\emph{i.e.} characteristic functions) to analytically solve quadratic non-autonomous Hamiltonians coupled to a reservoir composed by an infinity set of oscillators, with Gaussian initial state. We analytically obtain a solution for the characteristic function under dissipation, and therefore for the determinant of the covariance matrix and the von Neumann entropy, where the latter is the physical quantity of interest. We study in details two examples that are known to show dynamical squeezing and instability effects: the inverted harmonic oscillator and an oscillator with time dependent frequency. We show that it will appear in both cases a clear competition between instability and dissipation. If the dissipation is small when compared to the instability, the squeezing generation is dominant and one can see an increasing in the von Neumann entropy. When the dissipation is large enough, the dynamical squeezing generation in one of the quadratures is retained, thence the growth in the von Neumann entropy is contained

    Exotic looped trajectories via quantum marking

    Full text link
    We provide an analytical and theoretical study of exotic looped trajectories (ELTs) in a double-slit interferometer with quantum marking. We use an excited Rydberg-like atom and which-way detectors such as superconducting cavities, just as in the Scully-Englert-Walther interferometer. We indicate appropriate conditions on the atomic beam or superconducting cavities so that we determine an interference pattern and fringe visibility exclusive from the ELTs. We quantitatively describe our results for Rubidium atoms and propose this framework as an alternative scheme to the double-slit experiment modified to interfere only these exotic trajectories.Comment: 10 pages, 5 figure

    Asymmetrical bloch branes and the hierarchy problem

    Full text link
    We investigate a two scalar fields split braneworld model which leads to a possible approach to the hierarchy problem within the thick brane scenario. The model exhibits a resulting asymmetric warp factor suitable for this purpose. The solution is obtained by means of the orbit equation approach for a specific value of one of the parameters. Besides, we analyze the model qualitative behaviour for arbitrary parameters by inspecting the underlying dynamical system defined by the equations which give rise to the braneworld model. We finalize commenting on the metric fluctuation and stability issues.Comment: 8 pages, 7 figure

    Quantum-state transfer in staggered coupled-cavity arrays

    Get PDF
    We consider a coupled-cavity array, where each cavity interacts with an atom under the rotating-wave approximation. For a staggered pattern of inter-cavity couplings, a pair of field normal modes each bi-localized at the two array ends arise. A rich structure of dynamical regimes can hence be addressed depending on which resonance condition between the atom and field modes is set. We show that this can be harnessed to carry out high-fidelity quantum-state transfer (QST) of photonic, atomic or polaritonic states. Moreover, by partitioning the array into coupled modules of smaller length, the QST time can be substantially shortened without significantly affecting the fidelity.Comment: 12 pages, 8 figure
    corecore