20,316 research outputs found

    The Fermi level effect in III-V intermixing: The final nail in the coffin?

    Get PDF
    Copyright 1997 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 81, 2179 (1997) and may be found at

    Report of the Working Group on the Composition of Ultra High Energy Cosmic Rays

    Full text link
    For the first time a proper comparison of the average depth of shower maximum (XmaxX_{\rm max}) published by the Pierre Auger and Telescope Array Observatories is presented. The XmaxX_{\rm max} distributions measured by the Pierre Auger Observatory were fit using simulated events initiated by four primaries (proton, helium, nitrogen and iron). The primary abundances which best describe the Auger data were simulated through the Telescope Array (TA) Middle Drum (MD) fluorescence and surface detector array. The simulated events were analyzed by the TA Collaboration using the same procedure as applied to their data. The result is a simulated version of the Auger data as it would be observed by TA. This analysis allows a direct comparison of the evolution of Xmax\langle X_{\rm max} \rangle with energy of both data sets. The Xmax\langle X_{\rm max} \rangle measured by TA-MD is consistent with a preliminary simulation of the Auger data through the TA detector and the average difference between the two data sets was found to be (2.9±2.7  (stat.)±18  (syst.)) g/cm2(2.9 \pm 2.7\;(\text{stat.}) \pm 18\;(\text{syst.}))~\text{g/cm}^2.Comment: To appear in the Proceedings of the UHECR workshop, Springdale USA, 201

    Critical study of the distribution of rotational velocities of Be stars; II: Differential rotation and some hidden effects interfering with the interpretation of the Vsin i parameter

    Get PDF
    We assume that stars may undergo surface differential rotation to study its impact on the interpretation of V ⁣siniV\!\sin i and on the observed distribution Φ(u)\Phi(u) of ratios of true rotational velocities u=V/V_\rm c (V_\rm c is the equatorial critical velocity). We discuss some phenomena affecting the formation of spectral lines and their broadening, which can obliterate the information carried by V ⁣siniV\!\sin i concerning the actual stellar rotation. We studied the line broadening produced by several differential rotational laws, but adopted Maunder's expression Ω(θ)=Ωo(1+αcos2θ)\Omega(\theta)=\Omega_o(1+\alpha\cos^2\theta) as an attempt to account for all of these laws with the lowest possible number of free parameters. We studied the effect of the differential rotation parameter α\alpha on the measured V ⁣siniV\!\sin i parameter and on the distribution Φ(u)\Phi(u) of ratios u=V/V_\rm c. We conclude that the inferred V ⁣siniV\!\sin i is smaller than implied by the actual equatorial linear rotation velocity V_\rm eq if the stars rotate with α0\alpha0. For a given α|\alpha| the deviations of V ⁣siniV\!\sin i are larger when α<0\alpha<0. If the studied Be stars have on average α<0\alpha<0, the number of rotators with V_\rm eq\simeq0.9V_\rm c is larger than expected from the observed distribution Φ(u)\Phi(u); if these stars have on average α>0\alpha>0, this number is lower than expected. We discuss seven phenomena that contribute either to narrow or broaden spectral lines, which blur the information on the rotation carried by V ⁣siniV\!\sin i and, in particular, to decide whether the Be phenomenon mostly rely on the critical rotation. We show that two-dimensional radiation transfer calculations are needed in rapid rotators to diagnose the stellar rotation more reliably.Comment: To appear in A&

    Nonlinear optics of III-V semiconductors in the terahertz regime: an ab-initio study

    Full text link
    We compute from first principles the infrared dispersion of the nonlinear susceptibility χ(2)\chi^{(2)} in zincblende semiconductors. At terahertz frequencies the nonlinear susceptibility depends not only on the purely electronic response χ(2)\chi^{(2)}_{\infty}, but also on three other parameters C1C_1, C2C_2 and C3C_3 describing the contributions from ionic motion. They relate to the TO Raman polarizability, the second-order displacement-induced dielectric polarization, and the third-order lattice potential. Contrary to previous theory, we find that mechanical anharmonicity (C3C_3) dominates over electrical anharmonicity (C2C_2), which is consistent with recent experiments on GaAs. We predict that the sharp minimum in the intensity of second-harmonic generation recently observed for GaAs between ωTO/2\omega_{\rm TO}/2 and ωTO\omega_{\rm TO} does not occur for several other III-V compounds.Comment: 9 pages, 3 figures; updated bibliograph

    Germinação de sementes de Myracrodruon urundeuva Fr. All. Anacardiaceae) submetidas a estresse salino.

    Get PDF
    As condições que as sementes encontram no solo para germinação, nem sempre são ótimas, como é o caso dos solossalinose sódicos,o que ocorre naturalmenteem regiões áridas e semi-áridas

    A probabilistic approach to emission-line galaxy classification

    Get PDF
    We invoke a Gaussian mixture model (GMM) to jointly analyse two traditional emission-line classification schemes of galaxy ionization sources: the Baldwin-Phillips-Terlevich (BPT) and WHα\rm W_{H\alpha} vs. [NII]/Hα\alpha (WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey Data Release 7 and SEAGal/STARLIGHT datasets. We apply a GMM to empirically define classes of galaxies in a three-dimensional space spanned by the log\log [OIII]/Hβ\beta, log\log [NII]/Hα\alpha, and log\log EW(Hα{\alpha}), optical parameters. The best-fit GMM based on several statistical criteria suggests a solution around four Gaussian components (GCs), which are capable to explain up to 97 per cent of the data variance. Using elements of information theory, we compare each GC to their respective astronomical counterpart. GC1 and GC4 are associated with star-forming galaxies, suggesting the need to define a new starburst subgroup. GC2 is associated with BPT's Active Galaxy Nuclei (AGN) class and WHAN's weak AGN class. GC3 is associated with BPT's composite class and WHAN's strong AGN class. Conversely, there is no statistical evidence -- based on four GCs -- for the existence of a Seyfert/LINER dichotomy in our sample. Notwithstanding, the inclusion of an additional GC5 unravels it. The GC5 appears associated to the LINER and Passive galaxies on the BPT and WHAN diagrams respectively. Subtleties aside, we demonstrate the potential of our methodology to recover/unravel different objects inside the wilderness of astronomical datasets, without lacking the ability to convey physically interpretable results. The probabilistic classifications from the GMM analysis are publicly available within the COINtoolbox (https://cointoolbox.github.io/GMM\_Catalogue/).Comment: Accepted for publication in MNRA
    corecore