43,786 research outputs found

    Parametric Competition in non-autonomous Hamiltonian Systems

    Full text link
    In this work we use the formalism of chord functions (\emph{i.e.} characteristic functions) to analytically solve quadratic non-autonomous Hamiltonians coupled to a reservoir composed by an infinity set of oscillators, with Gaussian initial state. We analytically obtain a solution for the characteristic function under dissipation, and therefore for the determinant of the covariance matrix and the von Neumann entropy, where the latter is the physical quantity of interest. We study in details two examples that are known to show dynamical squeezing and instability effects: the inverted harmonic oscillator and an oscillator with time dependent frequency. We show that it will appear in both cases a clear competition between instability and dissipation. If the dissipation is small when compared to the instability, the squeezing generation is dominant and one can see an increasing in the von Neumann entropy. When the dissipation is large enough, the dynamical squeezing generation in one of the quadratures is retained, thence the growth in the von Neumann entropy is contained

    A note on the infrared behavior of the compactified Ginzburg--Landau model in a magnetic field

    Full text link
    We consider the Euclidean large-NN Ginzburg--Landau model in DD dimensions, dd (d≤Dd\leq D) of them being compactified. For D=3, the system can be supposed to describe, in the cases of d=1, d=2, and d=3, respectively, a superconducting material in the form of a film, of an infinitely long wire having a rectangular cross-section and of a brick-shaped grain. We investigate the fixed-point structure of the model, in the presence of an external magnetic field. An infrared-stable fixed points is found, which is independent of the number of compactified dimensions. This generalizes previous work for type-II superconducting filmsComment: LATEX, 6 pages no figures. arXiv admin note: 80% of text overlaps with arXiv:1102.139
    • …
    corecore