462 research outputs found

    Studies on synthetic and naturally occurring enzyme metabolites

    Get PDF
    No abstract available

    A solid-phase dot assay using silica/gold nanoshells

    Get PDF
    We report on the first application of silica-gold nanoshells to a solid-phase dot immunoassay. The assay principle is based on staining of a drop (1 µl) analyte on a nitrocellulose membrane strip by using silica/gold nanoshells conjugated with biospecific probing molecules. Experimental example is human IgG (hIgG, target molecules) and protein A (probing molecules). For usual 15-nm colloidal gold conjugates, the minimal detectable amount of hIgG is about 4 ng. By contrast, for nanoshell conjugates (silica core diameter of 70 nm and gold outer diameter of 100 nm) we have found significant increase in detection sensitivity and the minimal detectable amount of hIgG is about 0.5 ng. This finding is explained by the difference in the monolayer particle extinction

    Chromosomal location of human genes encoding major heat-shock protein HSP70

    Full text link
    The HSP70 family of heat-shock proteins constitutes the major proteins synthesized in response to elevated temperatures and other forms of stress. In eukaryotes members of the HSP70 family also include a protein similar if not identical to bovine brain uncoating ATPase and glucose-regulated proteins. An intriguing relation has been established between expression of heat-shock proteins and transformation in mammalian cells. Elevated levels of HSP70 are found in some transformed cell lines, and viral and cellular gene products that are capable of transforming cells in vitro can also stimulate transcription of HSP70 genes. To determine the organization of this complex multigene family in the human genome, we used complementary approaches: Southern analysis and protein gels of Chinese hamster-human somatic cell hybrids, and in situ hybridization to human chromosomes. We demonstrate that functional genes encoding HSP70 proteins map to human chromosomes 6, 14, 21, and at least one other chromosome .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45535/1/11188_2005_Article_BF01534692.pd

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF

    Post-acute COVID-19 neuropsychiatric symptoms are not associated with ongoing nervous system injury

    Get PDF
    A proportion of patients infected with severe acute respiratory syndrome coronavirus 2 experience a range of neuropsychiatric symptoms months after infection, including cognitive deficits, depression and anxiety. The mechanisms underpinning such symptoms remain elusive. Recent research has demonstrated that nervous system injury can occur during COVID-19. Whether ongoing neural injury in the months after COVID-19 accounts for the ongoing or emergent neuropsychiatric symptoms is unclear. Within a large prospective cohort study of adult survivors who were hospitalized for severe acute respiratory syndrome coronavirus 2 infection, we analysed plasma markers of nervous system injury and astrocytic activation, measured 6 months post-infection: neurofilament light, glial fibrillary acidic protein and total tau protein. We assessed whether these markers were associated with the severity of the acute COVID-19 illness and with post-acute neuropsychiatric symptoms (as measured by the Patient Health Questionnaire for depression, the General Anxiety Disorder assessment for anxiety, the Montreal Cognitive Assessment for objective cognitive deficit and the cognitive items of the Patient Symptom Questionnaire for subjective cognitive deficit) at 6 months and 1 year post-hospital discharge from COVID-19. No robust associations were found between markers of nervous system injury and severity of acute COVID-19 (except for an association of small effect size between duration of admission and neurofilament light) nor with post-acute neuropsychiatric symptoms. These results suggest that ongoing neuropsychiatric symptoms are not due to ongoing neural injury

    Incidence of diabetes mellitus following hospitalisation for COVID-19 in the United Kingdom: A prospective observational study

    Get PDF
    Background People hospitalised for coronavirus disease 2019 (COVID-19) have elevated incidence of diabetes. However, it is unclear whether this is due to shared risk factors, confounding or stress hyperglycaemia in response to acute illness. Methods We analysed a multicentre prospective cohort study (PHOSP-COVID) of people ≥18 years discharged from NHS hospitals across the United Kingdom following COVID-19. Individuals were included if they attended at least one research visit with a HbA1c measurement within 14 months of discharge and had no history of diabetes at baseline. The primary outcome was new onset diabetes (any type), as defined by a first glycated haemoglobin (HbA1c) measurement ≥6.5% (≥48 mmol/mol). Follow-up was censored at the last HbA1c measurement. Age-standardised incidence rates and incidence rate ratios (adjusted for age, sex, ethnicity, length of hospital stay, body mass index, smoking, physical activity, deprivation, hypertension, hyperlipidaemia/hypercholesterolaemia, intensive therapy unit admission, invasive mechanical ventilation, corticosteroid use and C-reactive protein score) were calculated using Poisson regression. Incidence rates were compared with the control groups of published clinical trials in the United Kingdom by applying the same inclusion and exclusion criteria, where possible. Results Incidence of diabetes was 91.4 per 1000 person-years and was higher in South Asian (incidence rate ratios [IRR] = 3.60; 1.77, 7.32; p < 0.001) and Black ethnic groups (IRR = 2.36; 1.07, 5.21; p = 0.03) compared with White ethnic groups. When restricted to similar characteristics, the incidence rates were similar to those in UK clinical trials data. Conclusion Diabetes incidence following hospitalisation for COVID-19 is high, but it remains uncertain whether it is disproportionately higher than pre-pandemic levels

    Long COVID and cardiovascular disease: a prospective cohort study

    Get PDF
    Background Pre-existing cardiovascular disease (CVD) or cardiovascular risk factors have been associated with an increased risk of complications following hospitalisation with COVID-19, but their impact on the rate of recovery following discharge is not known. Objectives To determine whether the rate of patient-perceived recovery following hospitalisation with COVID-19 was affected by the presence of CVD or cardiovascular risk factors. Methods In a multicentre prospective cohort study, patients were recruited following discharge from the hospital with COVID-19 undertaking two comprehensive assessments at 5 months and 12 months. Patients were stratified by the presence of either CVD or cardiovascular risk factors prior to hospitalisation with COVID-19 and compared with controls with neither. Full recovery was determined by the response to a patient-perceived evaluation of full recovery from COVID-19 in the context of physical, physiological and cognitive determinants of health. Results From a total population of 2545 patients (38.8% women), 472 (18.5%) and 1355 (53.2%) had CVD or cardiovascular risk factors, respectively. Compared with controls (n=718), patients with CVD and cardiovascular risk factors were older and more likely to have had severe COVID-19. Full recovery was significantly lower at 12 months in patients with CVD (adjusted OR (aOR) 0.62, 95% CI 0.43 to 0.89) and cardiovascular risk factors (aOR 0.66, 95% CI 0.50 to 0.86). Conclusion Patients with CVD or cardiovascular risk factors had a delayed recovery at 12 months following hospitalisation with COVID-19. Targeted interventions to reduce the impact of COVID-19 in patients with cardiovascular disease remain an unmet need

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification. Funding: UK Research and Innovation and National Institute for Health Research
    corecore