26,646 research outputs found

    Monochromatic Clique Decompositions of Graphs

    Get PDF
    Let GG be a graph whose edges are coloured with kk colours, and H=(H1,,Hk)\mathcal H=(H_1,\dots , H_k) be a kk-tuple of graphs. A monochromatic H\mathcal H-decomposition of GG is a partition of the edge set of GG such that each part is either a single edge or forms a monochromatic copy of HiH_i in colour ii, for some 1ik1\le i\le k. Let ϕk(n,H)\phi_{k}(n,\mathcal H) be the smallest number ϕ\phi, such that, for every order-nn graph and every kk-edge-colouring, there is a monochromatic H\mathcal H-decomposition with at most ϕ\phi elements. Extending the previous results of Liu and Sousa ["Monochromatic KrK_r-decompositions of graphs", Journal of Graph Theory}, 76:89--100, 2014], we solve this problem when each graph in H\mathcal H is a clique and nn0(H)n\ge n_0(\mathcal H) is sufficiently large.Comment: 14 pages; to appear in J Graph Theor

    Interfacial confinement in core-shell nanowires due to high dielectric mismatch

    Full text link
    We theoretically investigate the role of the dielectric mismatch between materials on the energy levels and recombination energies of a core-shell nanowire. Our results demonstrate that when the dielectric constant of the core material is lower than that of the shell material, the self-image potential pushes the charge carriers towards the core-shell interface, in such a way that the ideal confinement model is no longer suitable. The effects of this interfacial confinement on the electronic properties of such wires, as well as on its response to applied magnetic fields, are discussed.Comment: 4 pages, 3 figures and 1 material Supplementary; Applied Physics Letters 201

    Preliminary results of aerial infrared surveys at Pisgah Crater, California

    Get PDF
    In-flight tests of airborne infrared scanners, and comparison with field reflectance dat

    Exchange stiffness in ultrathin perpendicularly-magnetized CoFeB layers determined using spin wave spectroscopy

    Full text link
    We measure the frequencies of spin waves in nm-thick perpendicularly magnetized FeCoB systems, and model the frequencies to deduce the exchange stiffness of this material in the ultrathin limit. For this, we embody the layers in magnetic tunnel junctions patterned into circular nanopillars of diameters ranging from 100 to 300 nm and we use magneto-resistance to determine which rf-current frequencies are efficient in populating the spin wave modes. Micromagnetic calculations indicate that the ultrathin nature of the layer and the large wave vectors used ensure that the spin wave frequencies are predominantly determined by the exchange stiffness, such that the number of modes in a given frequency window can be used to estimate the exchange. For 1 nm layers the experimental data are consistent with an exchange stiffness A= 20 pJ/m, which is slightly lower that its bulk counterpart. The thickness dependence of the exchange stiffness has strong implications for the numerous situations that involve ultrathin films hosting strong magnetization gradients, and the micromagnetic description thereof.Comment: 5 pages, 4 figures, submitted to PR

    α\alpha Centauri A as a potential stellar model calibrator: establishing the nature of its core

    Full text link
    Understanding the physical process responsible for the transport of energy in the core of α\alpha Centauri A is of the utmost importance if this star is to be used in the calibration of stellar model physics. Adoption of different parallax measurements available in the literature results in differences in the interferometric radius constraints used in stellar modelling. Further, this is at the origin of the different dynamical mass measurements reported for this star. With the goal of reproducing the revised dynamical mass derived by Pourbaix & Boffin, we modelled the star using two stellar grids varying in the adopted nuclear reaction rates. Asteroseismic and spectroscopic observables were complemented with different interferometric radius constraints during the optimisation procedure. Our findings show that best-fit models reproducing the revised dynamical mass favour the existence of a convective core (\gtrsim 70% of best-fit models), a result that is robust against changes to the model physics. If this mass is accurate, then α\alpha Centauri A may be used to calibrate stellar model parameters in the presence of a convective core.Comment: 6 pages, 2 figures, 4 tables. Accepted for publication in Monthly Notices of the Royal Astronomical Society Letter

    Self-Similarity of Friction Laws

    Full text link
    The change of the friction law from a mesoscopic level to a macroscopic level is studied in the spring-block models introduced by Burridge-Knopoff. We find that the Coulomb law is always scale invariant. Other proposed scaling laws are only invariant under certain conditions.}Comment: Plain TEX. Figures not include
    corecore