24,774 research outputs found
Brane bounce-type configurations in a string-like scenario
Brane world six dimensional scenarios with string like metric has been
proposed to alleviate the problem of field localization. However, these models
have been suffering from some drawbacks related with energy conditions as well
as from difficulties to find analytical solutions. In this work, we propose a
model where a brane is made of a scalar field with bounce-type configurations
and embedded in a bulk with a string-like metric. This model produces a sound
AdS scenario where none of the important physical quantities is infinite. Among
these quantities are the components of the energy momentum tensor, which have
its positivity ensured by a suitable choice of the bounce configurations.
Another advantage of this model is that the warp factor can be obtained
analytically from the equations of motion for the scalar field, obtaining as a
result a thick brane configuration, in a six dimensional context. Moreover, the
study of the scalar field localization in these scenario is done.Comment: 15 pages, 5 figures. To appear in Physics Letters
The Penna model for biological ageing on a lattice: spatial consequences of child-care
We introduce a square lattice into the Penna bit-string model for biological
ageing and study the evolution of the spatial distribution of the population
considering different strategies of child-care. Two of the strategies are
related to the movements of a whole family on the lattice: in one case the
mother cannot move if she has any child younger than a given age, and in the
other case if she moves, she brings these young children with her. A stronger
condition has also been added to the second case, considering that young
children die with a higher probability if their mothers die, this probability
decreasing with age. We show that a highly non uniform occupation can be
obtained when child-care is considered, even for an uniform initial occupation
per site. We also compare the standard survival rate of the model with that
obtained when the spacial lattice is considered (without any kind of
child-care).Comment: 8 pages, 6 Postscript figure
The importance of target audiences in the design of training actions
This paper describes the process of definition, conceptualization and implementation of a business course addressed for logistic and industrial managers. This course was designed using a blended methodology, with training in classroom, visits to enterprises and self- study, supported by an eLearning platform. The aim of this work is to create an opportunity to reflect about the decisions and strategies implemented and point future developments
Energy in an Expanding Universe in the Teleparallel Geometry
The main purpose of this paper is to explicitly verify the consistency of the
energy-momentum and angular momentum tensor of the gravitational field
established in the Hamiltonian structure of the Teleparallel Equivalent of
General Relativity (TEGR). In order to reach these objectives, we obtained the
total energy and angular momentum (matter plus gravitational field) of the
closed universe of the Friedmann-Lemaitre-Robertson-Walker (FLRW). The result
is compared with those obtained from the pseudotensors of Einstein and
Landau-Lifshitz. We also applied the field equations (TEGR) in an expanding
FLRW universe. Considering the stress energy-momentum tensor for a perfect
fluid, we found a teleparallel equivalent of Friedmann equations of General
Relativity (GR).Comment: 19 pages, no figures. Revised in view of Referee's comments. Version
to appear in the Brazilian Journal of Physic
Site-dependent hydrogenation on graphdiyne
Graphene is one of the most important materials in science today due to its
unique and remarkable electronic, thermal and mechanical properties. However in
its pristine state, graphene is a gapless semiconductor, what limits its use in
transistor electronics. In part due to the revolution created by graphene in
materials science, there is a renewed interest in other possible graphene-like
two-dimensional structures. Examples of these structures are graphynes and
graphdiynes, which are two-dimensional structures, composed of carbon atoms in
sp2 and sp-hybridized states. Graphdiynes (benzenoid rings connecting two
acetylenic groups) were recently synthesized and some of them are intrinsically
nonzero gap systems. These systems can be easily hydrogenated and the relative
level of hydrogenation can be used to tune the band gap values. We have
investigated, using fully reactive molecular dynamics (ReaxFF), the structural
and dynamics aspects of the hydrogenation mechanisms of graphdiyne membranes.
Our results showed that the hydrogen bindings have different atom incorporation
rates and that the hydrogenation patterns change in time in a very complex way.
The formation of correlated domains reported to hydrogenated graphene is no
longer observed in graphdiyne cases.Comment: Submitted to Carbo
Applications and Sexual Version of a Simple Model for Biological Ageing
We use a simple model for biological ageing to study the mortality of the
population, obtaining a good agreement with the Gompertz law. We also simulate
the same model on a square lattice, considering different strategies of
parental care. The results are in agreement with those obtained earlier with
the more complicated Penna model for biological ageing. Finally, we present the
sexual version of this simple model.Comment: For Int.J.Mod.Phys.C Dec. 2001; 11 pages including 6 fig
Dielectric mismatch and shallow donor impurities in GaN/HfO2 quantum wells
In this work we investigate electron-impurity binding energy in GaN/HfO
quantum wells. The calculation considers simultaneously all energy
contributions caused by the dielectric mismatch: (i) image self-energy (i.e.,
interaction between electron and its image charge), (ii) the direct Coulomb
interaction between the electron-impurity and (iii) the interactions among
electron and impurity image charges. The theoretical model account for the
solution of the time-dependent Schr\"odinger equation and the results shows how
the magnitude of the electron-impurity binding energy depends on the position
of impurity in the well-barrier system. The role of the large dielectric
constant in the barrier region is exposed with the comparison of the results
for GaN/HfO with those of a more typical GaN/AlN system, for two different
confinement regimes: narrow and wide quantum wells.Comment: 6 Pages, 7 figure
- …