102 research outputs found

    Categorization of lower body shapes of abdominal obese men using a script-based 3D body measurement software

    Get PDF
    The objectives of this study are to identify the principal components that represent distinctive shapes from the silhouette and profile views of the lower body shapes of abdominal obese Korean men and to categorize their body types. Using 3D scans of 625 men aged 35–64 in the 6th SizeKorea dataset, 173 scans (27.7%) of men in abdominal obese category (BMI value of 25, waist girth to height ratio of 0.53, and waist girth to hip girth ratio of 0.9 or higher) were utilized. We developed a script to measure 38 items such as front/back crotch length and front/back depths and angles using the SNU-BM program, which is a script-based automated 3D body scan measurement software. The measurements used for principal component (PC) analysis were 31 drops, 2 heights, 2 lengths and 4 angles. Ten PCs representing distinctive silhouettes and profiles of lower body shapes were extracted. The PCs were interpreted as follows: abdomen prominence, thigh to knee profile, upper buttocks prominence, waist to hip drop, thigh to knee silhouette, lower body tilt angle, waist to crotch length, vertical height, abdomen to crotch height, and lower buttocks slope. The three body shape groups were categorized using a K means cluster analysis with ten PC scores. Group 1 had a flat abdomen but prominent buttocks. Group 2 had a developed abdomen and buttocks with vertical thighs. Group 3 had drooped buttocks with tilted thighs.This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (NRF-2017R1C1B5017733)

    Role of S5b/PSMD5 in Proteasome Inhibition Caused by TNF-α/NFκB in Higher Eukaryotes

    Get PDF
    SummaryThe ubiquitin-proteasome system is essential for maintaining protein homeostasis. However, proteasome dysregulation in chronic diseases is poorly understood. Through genome-wide cell-based screening using 5,500 cDNAs, a signaling pathway leading to NFκB activation was selected as an inhibitor of 26S proteasome. TNF-α increased S5b (HGNC symbol PSMD5; hereafter S5b/PSMD5) expression via NFκB, and the surplus S5b/PSMD5 directly inhibited 26S proteasome assembly and activity. Downregulation of S5b/PSMD5 abolished TNF-α-induced proteasome inhibition. TNF-α enhanced the interaction of S5b/PSMD5 with S7/PSMC2 in nonproteasome complexes, and interference of this interaction rescued TNF-α-induced proteasome inhibition. Transgenic mice expressing S5b/PSMD5 exhibited a reduced life span and premature onset of aging-related phenotypes, including reduced proteasome activity in their tissues. Conversely, S5b/PSMD5 deficiency in Drosophila melanogaster ameliorated the tau rough eye phenotype, enhanced proteasome activity, and extended the life span of tau flies. These results reveal the critical role of S5b/PSMD5 in negative regulation of proteasome by TNF-α/NFκB and provide insights into proteasome inhibition in human disease

    An Integration Avenue of Ground Monitoring Based on Wireless Sensor Networks

    Get PDF
    Since wireless sensor networks (WSNs) have a lot of potential capability to provide diverse services to human by monitoring things scattered in real world, they are envisioned as one of the core enabling technologies for ubiquitous computing which organizes and mediates both physical and social interactions anytime and anywhere. WSNs are being adopted in various fields and things in their zones are being monitored. However, existing WSNs are normally designed for observing special zones or regional things based on small-scale, low power, and short range technologies. Seamless system integration at a global scale is still in its infancy stage due to the lack of the fundamental integration technologies. In this paper, we present a global integration avenue of ground monitoring based on WSNs. The proposed avenue includes design, integration, and operational strategies of IP-WSN based territorial monitoring system to ensure compatibility, interoperability, and real-time. Specifically, we offer the standardization of sensing data formats using IP-WSN and database interfaces using EPC sensor network, which enable a spontaneous and systematic integration among the legacy WSN systems. Also, we categorize network topology according to topographic characteristics thereby helping deploy sensor nodes on the real environment. Therefore, the proposed technology would be a milestone for the practically deployable global territorial monitoring systems

    Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development

    Get PDF
    Time-resolved transcriptome analysis of early pou5f1 mutant zebrafish embryos identified groups of developmental regulators, including SoxB1 genes, that depend on Pou5f1 activity, and a large cluster of differentiation genes which are prematurely expressed.Pou5f1 represses differentiation genes indirectly via activation of germlayer-specific transcriptional repressor genes, including her3, which may mediate in part Pou5f1-dependent repression of neural genes.A dynamic mathematical model is established for Pou5f1 and SoxB1 activity-dependent temporal behaviour of downstream transcriptional regulatory networks. The model predicts that Pou5f1-dependent increase in SoxB1 activity significantly contributes to developmental timing in the early gastrula.Comparison to mouse Pou5f1/Oct4 reveals evolutionary conserved targets. We show that Pou5f1 developmental function is also conserved by demonstrating rescue of Pou5f1 mutant zebrafish embryos by mouse POU5F1/OCT4

    Phase Variation of Biofilm Formation in Staphylococcus aureus by IS256 Insertion and Its Impact on the Capacity Adhering to Polyurethane Surface

    Get PDF
    While ica gene of Staphylococcus epidermidis is known to undergo phase variation by insertion of IS256, the phenomenon in Staphylococcus aureus has not been evaluated. Six biofilm-positive strains were tested for the presence of biofilm-negative phase-variant strains by Congo red agar test. For potential phase-variant strains, pulsed-field gel electrophoresis was done to exclude the possibility of contamination. To investigate the mechanism of the biofilm-negative phase variation, PCR for each ica genes were done. Changes of ica genes detected by PCR were confirmed by southern hybridization, and their nucleotides were analyzed by DNA sequencing. Influence of ica genes and biofilm formation on capacity for adherence to biomedical material was evaluated by comparing the ability of adhering to polyurethane surface among a biofilm-negative phase-variant strain and its parent strain. A biofilm-negative phase-variant S. aureus strain was detected from 6 strains tested. icaC gene of the phase-variant strain was found to be inactivated by insertion of additional gene segment, IS256. The biofilm-negative phase-variant strain showed lower adhering capacity to polyurethane than its parent strain. This study shows that phase variation of ica gene occurs in S. aureus by insertion of IS256 also, and this biofilm-negative phase variation reduces adhering capacity of the bacteria

    Porphyra tenera Extracts Have Immune Stimulation Activity via Increasing Cytokines in Mouse Primary Splenocytes and RAW264.7 Macrophages

    Get PDF
    Abstract Porphyra tenera has long been consumed as food in Korea and Asia. The effects of Porphyra tenera extracts on the immune system are largely unknown. Therefore, this study investigated the immune-stimulating effects of ethanol and water extracts of P. tenera. The immunomodulatory potential of P. tenera was evaluated by determining its effect on cell viability and cytokine expression of mouse RAW264.7 cells and splenocytes. We investigated the effect of 10% ethanol extracts of laver (P. tenera) on the RAW264.7 cells. Production of nitric oxide (NO) and cytokines (interleukin [IL]-1β, IL-2, and IL-4, inducible NO synthase, and interferon-γ) in RAW264.7 macrophages was slightly higher after treatment with P. tenera extracts. Ethanol extracts upregulated and enhanced the functions of macrophages, such as NO and cytokines (IL-1β, IL-2, and IL-4, inducible NO synthase, and interferon-γ) production. In addition, cytokine concentrations were significantly increased in cells treated with different doses of P. tenera ethanol extracts compared to the control group. Overall, the results demonstrated that P. tenera extracts enhanced cytokine secretion in mouse splenocytes and macrophages. From these findings, it can be concluded that P. tenera possess a natural compound with immune-stimulatory activity. P. tenera extract is a good immunostimulant from natural compounds

    E2-25K/Hip-2 regulates caspase-12 in ER stress–mediated Aβ neurotoxicity

    Get PDF
    Amyloid-β (Aβ) neurotoxicity is believed to contribute to the pathogenesis of Alzheimer's disease (AD). Previously we found that E2-25K/Hip-2, an E2 ubiquitin-conjugating enzyme, mediates Aβ neurotoxicity. Here, we report that E2-25K/Hip-2 modulates caspase-12 activity via the ubiquitin/proteasome system. Levels of endoplasmic reticulum (ER)–resident caspase-12 are strongly up-regulated in the brains of AD model mice, where the enzyme colocalizes with E2-25K/Hip-2. Aβ increases expression of E2-25K/Hip-2, which then stabilizes caspase-12 protein by inhibiting proteasome activity. This increase in E2-25K/Hip-2 also induces proteolytic activation of caspase-12 through its ability to induce calpainlike activity. Knockdown of E2-25K/Hip-2 expression suppresses neuronal cell death triggered by ER stress, and thus caspase-12 is required for the E2-25K/Hip-2–mediated cell death. Finally, we find that E2-25K/Hip-2–deficient cortical neurons are resistant to Aβ toxicity and to the induction of ER stress and caspase-12 expression by Aβ. E2-25K/Hip-2 is thus an essential upstream regulator of the expression and activation of caspase-12 in ER stress–mediated Aβ neurotoxicity

    간단한 그리드 제어 선 방식의 2차원 빔포밍 능동 렌즈

    No full text
    2
    corecore