194 research outputs found

    The Specificity of Human Capital and Risk Management of the College Counselor from the Perspective of Internationalization

    Get PDF
    Shifting the concept of human resource to the concept of human capital is an inevitable tendency in developing human resource of college counselor. It is because the college counselor has its own specificity that it is hardly possible to avoid the risks of entry and exit which brings in completely. The paper listed the priority of psychological capital, human capital and social capital of the college counselor from the perspective of in-system in the order to attempt to discuss their inner logical relationship based on the basic theory of risk management. Key words: College counsellor; The specificity of human capital; Risk management; In-system Résumé: Déplacer le concept de ressources humaines pour le concept de capital humain est une tendance inévitable dans le développement des ressources humaines de conseiller du collège. C'est parce que le conseiller collège a sa propre spécificité qu'il n'est guère possible d'éviter les risques d'entrée et de sortie qui amène à fond. Le document énumère les priorités du capital psychologique, le capital humain et le capital social de la conseillère collège dans la perspective d'en-système dans l'ordre pour tenter de discuter de leur relation logique interne basé sur la théorie de base de gestion des risques. Mots clés: Université de conseiller; La spécificité du capital humain; La gestion des risques; Et du systèm

    Research on flux of dry atmospheric falling dust and its characterization in a subtropical city, Guangzhou, South China

    Get PDF
    Guangzhou is the central city in the Pearl River Delta (PRD), China, and is one of the most polluted cities in the world. To characterize the ambient falling dust pollution, two typical sampling sites: urban (Wushan) and suburban (University Town) areas in Guangzhou city were chosen for falling dust collection over 1 year at time intervals of 1 or 2 months. The flux of dry deposition was calculated. In addition, mineral composition and morphology of atmospheric falling dust were studied by X-ray diffraction, scanning electron microscopy, and microscopic observation. The results revealed that the dust flux in Guangzhou city was 3.34–3.78 g/(m2 month) during the study period. The main minerals in the dust were quartz, illite, calcite, kaolinite, gypsum, plagioclase, dolomite, and amorphous matter. The morphological types included grained and flaky individual minerals, chain-like aggregates, spherical flying beads, and irregular aggregates, with the chain-like and spherical aggregates indicators of industrial ash. The major dusts were derived from industrial and construction activities. The gypsum present in the dust collected in winter season was not only derived from cement dust but may also have originated from the reaction of calcic material with sulfuric acids resulting from photooxidation of SOx and NOx, which confirmed serious air pollution due to SOx and NOx in Guangzhou. The abatement of fossil fuel combustion emissions and construction dust will have a significant beneficial effect on dust reduction

    Superconducting traction transformer:Traction - the HTS Transformer Killer Application?

    Get PDF
    An ongoing project to develop HTS traction transformers for the Chinese Fuxing high-speed train is demonstrating that the high power density accessible using high temperature superconductors (HTS) can produce spectacular results: the existing 6.5 MVA traction transformers can be replaced with drop-in superconducting transformers which can achieve targets of less than 3 tons transformer system weight and 99.5% efficiency compared to 6 tons and 95% in the existing devices. The key to achieving these impressive figures is minimising the AC loss of the HTS windings. New high-performance wire, high current HTS Roebel conductor, high aspect-ratio windings, and flux diverters placed at the winding ends all contribute to reducing the electrical loss to less than 2 kW

    Design of a single-phase 6.5 MVA/25 kV superconducting traction transformer for the Chinese Fuxing high-speed train

    Get PDF
    Traction transformers are critical components of Chinese high-speed-trains. We are currently building a single–phase 6.5 MVA superconducting traction transformer which can achieve targets of less than 3 tons of transformer system weight, better than 99% efficiency, and 43% short-circuit impedance. The proposed transformer consists of four single-phase 25 kV/1.9 kV HTS windings, operating at 65 K, each of which drives a motor. The design incorporates Roebel cable in the LV windings to cope with large current and minimize AC loss. We present 2D FEM AC loss modelling results that identify the critical parameters that contribute to AC loss. We show that the combination of winding length ≥1 m, high performance Fujikura wires, and flux diverters arranged at the end of HV and LV windings, can restrain AC loss in the HTS windings to under 2 kW. We introduce an open-loop cooling system concept with sub-cooler integrated inside the transformer cryostat that can achieve total system weight under 3 tons assuming 2.5 kW total heat load and 8 h of continuous running time. A nominal efficiency of 99.5% can be achieved for this total heat load. The entire superconducting transformer system can be readily fit in the space allocated for conventional transformers in the Chinese Fuxing trains

    The Role of NMDA Receptors in Alzheimer’s Disease

    Get PDF
    In Alzheimer’s disease (AD), early synaptic dysfunction is associated with the increased oligomeric amyloid-beta peptide, which causes NMDAR-dependent synaptic depression and spine elimination. Memantine, low-affinity NMDAR channel blocker, has been used in the treatment of moderate to severe AD. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between NMDARs dysfunction and AD. This review focuses on not only changes in expression of different NMDAR subunits, but also some unconventional modes of NMDAR action

    The triggering process of an X-class solar flare on a small quadrupolar active region

    Full text link
    The occurrence of X-class solar flares and their potential impact on the space weather often receive great attention than other flares. But predicting when and where an X-class flare will occur is still a challenge. With the multi-wavelength observation from the Solar Dynamics Observatory and FengYun- 3E satellite, we investigate the triggering of a GOES X1.0 flare occurring in the NOAA active region (AR) 12887. Our results show that this unique X-class flare is bred in a relatively small but complex quadrupolar AR. Before the X-class flare, two filaments (F1 and F2) exist below a null-point topology of the quadrupolar AR. Magnetic field extrapolation and observation reveal that F1 and F2 correspond to two magnetic flux ropes with the same chirality and their adjacent feet rooted at nonconjugated opposite polarities, respectively. Interestingly, these two polarities collide rapidly, accompanied by photospheric magnetic flux emergence, cancellation and shear motion in the AR center. Above this site, F1 and F2 subsequently intersect and merge to a longer filament (F3) via a tether-cutting-like reconnection process. As a result, the F3 rises and erupts, involving the large-scale arcades overlying filament and the quadrupolar magnetic field above the AR, and eventually leads to the eruption of the X-class flare with a quasi-X-shaped flare ribbon and a coronal mass ejection. It suggests that the rapid collision of nonconjugated opposite polarities provides a key condition for the triggering of this X-class flare, and also provides a featured case for flare trigger mechanism and space weather forecasting.Comment: 24 pages, 7 figures, accepted for publication in Ap

    B\"{a}cklund transformations for high-order constrained flows of the AKNS hierarchy: canonicity and spectrality property

    Full text link
    New infinite number of one- and two-point B\"{a}cklund transformations (BTs) with explicit expressions are constructed for the high-order constrained flows of the AKNS hierarchy. It is shown that these BTs are canonical transformations including B\"{a}cklund parameter η\eta and a spectrality property holds with respect to η\eta and the 'conjugated' variable μ\mu for which the point (η,μ)(\eta, \mu) belongs to the spectral curve. Also the formulas of m-times repeated Darboux transformations for the high-order constrained flows of the AKNS hierarchy are presented.Comment: 21 pages, Latex, to be published in J. Phys.

    Exploring retinal ganglion cells encoding to multi-modal stimulation using 3D microelectrodes arrays

    Get PDF
    Microelectrode arrays (MEA) are extensively utilized in encoding studies of retinal ganglion cells (RGCs) due to their capacity for simultaneous recording of neural activity across multiple channels. However, conventional planar MEAs face limitations in studying RGCs due to poor coupling between electrodes and RGCs, resulting in low signal-to-noise ratio (SNR) and limited recording sensitivity. To overcome these challenges, we employed photolithography, electroplating, and other processes to fabricate a 3D MEA based on the planar MEA platform. The 3D MEA exhibited several improvements compared to planar MEA, including lower impedance (8.73 ± 1.66 kΩ) and phase delay (−15.11° ± 1.27°), as well as higher charge storage capacity (CSC = 10.16 ± 0.81 mC/cm2), cathodic charge storage capacity (CSCc = 7.10 ± 0.55 mC/cm2), and SNR (SNR = 8.91 ± 0.57). Leveraging the advanced 3D MEA, we investigated the encoding characteristics of RGCs under multi-modal stimulation. Optical, electrical, and chemical stimulation were applied as sensory inputs, and distinct response patterns and response times of RGCs were detected, as well as variations in rate encoding and temporal encoding. Specifically, electrical stimulation elicited more effective RGC firing, while optical stimulation enhanced RGC synchrony. These findings hold promise for advancing the field of neural encoding

    Endovascular Recanalization of Non-acute Symptomatic Middle Cerebral Artery Total Occlusion and Its Short-Term Outcomes

    Get PDF
    Background and Purpose: The optimal treatment for patients with non-acute symptomatic middle cerebral artery (MCA) total occlusion and a high risk of recurrent ischemic stroke despite medical management is not well-established. We aimed to assess the feasibility, safety, and short-term outcomes of angioplasty and stenting for these patients.Methods: Data of 22 patients with non-acute symptomatic MCA total occlusion who have failed medical management and undergone endovascular recanalization were retrospectively collected in our prospective database. All occlusive lesions were predilated with conventional balloons, followed by paclitaxel-coated coronary balloon inflation or not, and then a remedial stenting was performed or not, depending on the discretion of the operator. The rate of successful recanalization, perioperative outcomes, and short-term outcomes, such as restenosis and stroke recurrence, was analyzed.Results: Successful recanalization was achieved in 95.5% of patients, with 14 patients undergoing balloon angioplasty and 7 patients undergoing remedial stenting. Seven patients developed perioperative complications, including one patient with persistent neurological deficit. Over a median clinical follow-up duration of 5.0 months, only one patient had recurrent ischemic symptoms attributed to the cessation of antiplatelet treatment owing to postoperative intracranial hemorrhage. The proportion of patients who achieved favorable clinical outcome (modified ranking scale score of 0–2) was 85.7%. Post-procedural repeat vascular imaging was performed at 4.5 ± 1.84 months, with nine and one patient undergoing cerebral angiography and magnetic resonance angiography, respectively. One (10%) artery presented with asymptomatic reocclusion.Conclusions: Angioplasty and stenting may be feasible for the patients with non-acute symptomatic atherosclerotic MCA total occlusive disease who have failed medical management

    Aptamer modified Zr-based porphyrinic nanoscale metal-organic frameworks for active-targeted chemo-photodynamic therapy of tumors

    Get PDF
    Active-targeted nanoplatforms could specifically target tumors compared to normal cells, making them a promising therapeutic agent. The aptamer is a kind of short DNA or RNA sequence that can specifically bind to target molecules, and could be widely used as the active targeting agents of nanoplatforms to achieve active-targeted therapy of tumors. Herein, an aptamer modified nanoplatform DOX@PCN@Apt-M was designed for active-targeted chemo-photodynamic therapy of tumors. Zr-based porphyrinic nanoscale metal organic framework PCN-224 was synthesized through a one-pot reaction, which could produce cytotoxic 1O2 for efficient treatment of tumor cells. To improve the therapeutic effect of the tumor, the anticancer drug doxorubicin (DOX) was loaded into PCN-224 to form DOX@PCN-224 for tumor combination therapy. Active-targeted combination therapy achieved by modifying the MUC1 aptamer (Apt-M) onto DOX@PCN-224 surface can not only further reduce the dosage of therapeutic agents, but also reduce their toxic and side effects on normal tissues. In vitro, experimental results indicated that DOX@PCN@Apt-M exhibited enhanced combined therapeutic effect and active targeting efficiency under 808 nm laser irradiation for MCF-7 tumor cells. Based on PCN-224 nanocarriers and aptamer MUC1, this work provides a novel strategy for precisely targeting MCF-7 tumor cells
    • …
    corecore