792 research outputs found

    A finite-difference solution of solute transport through a membrane bioreactor

    Get PDF
    The current paper presents a theoretical analysis of the transport of solutes through a fixed-film membrane bioreactor (MBR), immobilised with an active biocatalyst. The dimensionless convection-diffusion equation with variable coefficients was solved analytically and numerically for concentration profiles of the solutes through the MBR. The analytical solution makes use of regular perturbation and accounts for radial convective flow as well as axial diffusion of the substrate species. The Michaelis-Menten (or Monod) rate equation was assumed for the sink term, and the perturbation was extended up to second-order. In the analytical solution only the first-order limit of the Michaelis-Menten equation was considered; hence the linearized equation was solved. In the numerical solution, however, this restriction was lifted. The solution of the nonlinear, elliptic, partial differential equation was based on an implicit finite-difference method (FDM). An upwind scheme was employed for numerical stability. The resulting algebraic equations were solved simultaneously using the multivariate Newton-Raphson iteration method. The solution allows for the evaluation of the effect on the concentration profiles of (i) the radial and axial convective velocity, (ii) the convective mass transfer rates, (iii) the reaction rates, (iv) the fraction retentate, and (v) the aspect ratio

    A Solution to the Graceful Exit Problem in Pre-Big Bang Cosmology

    Full text link
    We examine the string cosmology equations with a dilaton potential in the context of the Pre-Big Bang Scenario with the desired scale factor duality, and give a generic algorithm for obtaining solutions with appropriate evolutionary properties. This enables us to find pre-big bang type solutions with suitable dilaton behaviour that are regular at t=0t=0, thereby solving the graceful exit problem. However to avoid fine tuning of initial data, an `exotic' equation of state is needed that relates the fluid properties to the dilaton field. We discuss why such an equation of state should be required for reliable dilaton behaviour at late times.Comment: 16 pages LaTeX, 5 figures. To appear in Physical Review

    Bounce Conditions in f(R) Cosmologies

    Full text link
    We investigate the conditions for a bounce to occur in Friedmann-Robertson-Walker cosmologies for the class of fourth order gravity theories. The general bounce criterion is determined and constraints on the parameters of three specific models are given in order to obtain bounces solutions. It is found that unlike the case of General Relativity, a bounce appears to be possible in open and flat cosmologies.Comment: 11 pages LaTe

    Caustics of Compensated Spherical Lens Models

    Get PDF
    We consider compensated spherical lens models and the caustic surfaces they create in the past light cone. Examination of cusp and crossover angles associated with particular source and lens redshifts gives explicit lensing models that confirm previous claims that area distances can differ by substantial factors from angular diameter distances even when averaged over large angular scales. `Shrinking' in apparent sizes occurs, typically by a factor of 3 for a single spherical lens, on the scale of the cusp caused by the lens; summing over many lenses will still leave a residual effect.Comment: 21 pages, 5 ps figures, eps

    Brane Dynamics in the Randall-Sundrum model, Inflation and Graceful Exit

    Get PDF
    We study the averaged action of the Randall-Sundrum model with a time dependent metric ansatz. It can be reformulated in terms of a Brans-Dicke action with time dependent Newton's constant. We show that the physics of early universe, particularly inflation, is governed by the Brans-Dicke theory. The Brans-Dicke scalar, however, quickly settles to its equilibrium value and decouples from the post-inflationary cosmology. The deceleration parameter is negative to start with but changes sign before the Brans-Dicke scalar settles to its equilibrium value. Consequently, the brane metric smoothly exits inflation. We have also studied the slow-roll inflation in our model and investigated the spectra of the density perturbation generated by the radion field and find them consistent with the current observations.Comment: Revised version, Accepted in Class. Quant. Gravit

    Bounce behaviour in Kantowski-Sachs and Bianchi Cosmologies

    Full text link
    Many cosmological scenarios envisage either a bounce of the universe at early times, or collapse of matter locally to form a black hole which re-expands into a new expanding universe region. Energy conditions preclude this happening for ordinary matter in general relativistic universes, but scalar or dilatonic fields can violate some of these conditions, and so could possibly provide bounce behaviour. In this paper we show that such bounces cannot occur in Kantowski-Sachs models without violating the {\it reality condition} ϕ˙2≄0\dot{\phi}^2\geq 0. This also holds true for other isotropic spatially homogenous Bianchi models, with the exception of closed Friedmann-Robertson-Walker and Bianchi IX models; bounce behaviour violates the {\em weak energy condition} ρ≄0\rho\geq 0 and ρ+p≄0\rho+p\geq 0. We turn to the Randall-Sundrum type braneworld scenario for a possible resolution of this problem.Comment: Matches published versio

    Local electronic density of states of a semiconducting carbon nanotube interface

    Get PDF
    The local electronic structure of semiconducting single-wall carbon nanotubes was studied with scanning tunneling microscopy. We performed scanning tunneling spectroscopy measurement at selected locations on the center axis of carbon nanotubes, acquiring a map of the electronic density of states. Spatial oscillation was observed in the electronic density of states with the period of atomic lattice. Defect induced interface states were found at the junctions of the two semiconducting nanotubes, which are well-understood in analogy with the interface states of bulk semiconductor heterostructures. The electronic leak of the van Hove singularity peaks was observed across the junction, due to inefficient charge screening in a one-dimensional structure.open111
    • 

    corecore