129 research outputs found

    Proband and Familial Autoimmune Diseases Are Associated With Proband Diagnosis of Autism Spectrum Disorders

    Get PDF
    Objective: There is evidence that parental autoimmune diseases (ADs) are associated with autism spectrum disorders (ASD) in offspring. The association between offspring ASD and ADs diagnosed in siblings and probands remains less clear. We examined whether proband and familial diagnoses of ADs were associated with increased odds of ASD in probands.Method: The study is based on a nested case-control design that used data from a large national birth cohort (N = 1.2 million) in Finland. There were 4,600 cases of ASD and controls matched 1:4 on date of birth, sex, and residence. Data were accessed from national medical, birth, and central registries.Results: Probands had a statistically significant increase in odds of ASD when they (adjusted odds ratio [OR] = 1.2), their mother (adjusted OR = 1.1), or their sibling (adjusted OR = 1.2) were diagnosed with an AD. With regard to specific ADs, we found a statistically significant increase in odds of ASD in probands diagnosed with autoimmune thyroiditis (adjusted OR = 2.7). Further analyses considering ADs by body system yielded a statistically significant increase in odds of ASD in probands with ADs associated with the central/peripheral nervous (adjusted OR = 4.8) and skin/mucous membrane (adjusted OR = 1.3) systems. Probands of mothers diagnosed with ear/eye (adjusted OR = 1.6) or respiratory (adjusted OR = 1.4) ADs, or siblings diagnosed with skin/mucous membrane ADs (adjusted OR = 1.3) also had increased odds of ASD.Conclusion: The findings suggest that there may be common pathogenic, developmental mechanisms related to autoimmunity that are associated with the etiology of ASD.</p

    “My Treasure Box” : Pedagogical documentation, digital portfolios and children’s agency in Finnish early years education

    Get PDF
    This chapter discusses the opportunities and challenges associated with the inclusive use of digital portfolios in pedagogical documentation in Finnish early childhood education (ECE), and examines children’s participation and agency in the process. The chapter draws upon empirical data from the research and development programme of three Finnish municipalities and their ECE centres. Altogether, the empirical data comprise the digital portfolios of 71 children from six ECE groups each comprising of children aged 3 to 5 years old. This writing demonstrates how the construction of digital portfolios in these ECE groups produced a dynamic tension between the adults’ and children’s agency; between digital archiving and narrative documentation of the children’s lived experiences; and between documentation and reflection. The results also indicate how digital portfolios created inequality among the children regarding the ways in which the children were seen and heard in their portfolios, and how they were able to participate and demonstrate agency in this process. The chapter concludes by considering the conditions of participatory work in ECE classrooms in which the child’s agency. matters.Peer reviewe

    Time domains of the hypoxic ventilatory response in ectothermic vertebrates

    Get PDF
    Over a decade has passed since Powell et al. (Respir Physiol 112:123–134, 1998) described and defined the time domains of the hypoxic ventilatory response (HVR) in adult mammals. These time domains, however, have yet to receive much attention in other vertebrate groups. The initial, acute HVR of fish, amphibians and reptiles serves to minimize the imbalance between oxygen supply and demand. If the hypoxia is sustained, a suite of secondary adjustments occur giving rise to a more long-term balance (acclimatization) that allows the behaviors of normal life. These secondary responses can change over time as a function of the nature of the stimulus (the pattern and intensity of the hypoxic exposure). To add to the complexity of this process, hypoxia can also lead to metabolic suppression (the hypoxic metabolic response) and the magnitude of this is also time dependent. Unlike the original review of Powell et al. (Respir Physiol 112:123–134, 1998) that only considered the HVR in adult animals, we also consider relevant developmental time points where information is available. Finally, in amphibians and reptiles with incompletely divided hearts the magnitude of the ventilatory response will be modulated by hypoxia-induced changes in intra-cardiac shunting that also improve the match between O2 supply and demand, and these too change in a time-dependent fashion. While the current literature on this topic is reviewed here, it is noted that this area has received little attention. We attempt to redefine time domains in a more ‘holistic’ fashion that better accommodates research on ectotherms. If we are to distinguish between the genetic, developmental and environmental influences underlying the various ventilatory responses to hypoxia, however, we must design future experiments with time domains in mind
    corecore