1,450 research outputs found
Self-Tuning Dark Energy in Brane World Cosmology
Recently, the self-tuning mechanism of cancellation of vacuum energy has been
proposed in which our universe is a flat 3-brane in a 5-dimensional spacetime.
In this letter, the self-tuning mechanism of dark energy is proposed by
considering the cosmological matter in the brane world. In our model, the bulk
scalar field takes the role of the dark energy and its value is slowly varying
in time. The claim is that even if the enormous amount of vacuum energy exists
on the brane we can adjust the present value of the dark energy to be
consistent with the current observations. In this self-tuning mechanism, the
existence of the constant of integration associated with the bulk scalar is
crucial.Comment: 11pages, LaTe
Quasi Non-linear Evolution of Stochastic Bias
It is generally believed that the spatial distribution of galaxies does not
trace that of the total mass. The understanding of the bias effect is therefore
necessary to determine the cosmological parameters and the primordial density
fluctuation spectrum from the galaxy survey. The deterministic description of
bias may not be appropriate because of the various stochasticity of galaxy
formation process. In nature, the biasing is epoch dependent and recent deep
survey of the galaxy shows the large biasing at high redshift. Hence, we
investigate quasi non-linear evolution of the stochastic bias by using the tree
level perturbation method. Especially, the influence of the initial cross
correlation on the evolution of the skewness and the bi-spectrum is examined in
detail. We find that the non-linear bias can be generated dynamically. The
small value of the initial cross correlation can bend the \dg-\dm relation
effectively and easily lead to the negative curvature (). We also
propose a method to predict the bias, cross correlation and skewness at high
redshift. As an illustration, the possibility of the large biasing at high
redshift is discussed. Provided the present bias parameter as and
, we predict the large scale bias as at by fitting
the bi-spectrum to the Lick catalog data. Our results will be important for the
future deep sky survey.Comment: 20 pages, 5 Encapsulated Postscript figures, aastex, final version to
appear in Ap
Flexible substrate for printed wiring
A very flexible substrate for printed wiring is disclosed which is composed of a blend of phenoxy resin-polyisocyanate-brominated epoxy resin in which the equivalent ration of the functional groups is hydroxyl grouped: isocyanate group: epoxy group = 1:0.2 to 2:0.5 to 3. The product has outstanding solder resistance and is applied to metal without using adhesives
Flexible composite film for printed circuit board
A flexible printed circuit for a printed circuit board in which layers of reaction product composed of a combination of phenoxy resin - polyisocyanate - brominated epoxy resin, and in which the equivalent ratio of those functional groups is hydroxyl group: isocyanate group: epoxy group - 1 : 0.2 to 2 : 0.5 to 3 are laminated on at least one side of saturated polyester film is discussed
Electric Polarization Induced by a Proper Helical Magnetic Ordering in a Delafossite Multiferroic CuFe1-xAlxO2
Multiferroic CuFe1-xAlxO2 (x=0.02) exhibits a ferroelectric ordering
accompanied by a proper helical magnetic ordering below T=7K under zero
magnetic field. By polarized neutron diffraction and pyroelectric measurements,
we have revealed a one-to-one correspondence between the spin helicity and the
direction of the spontaneous electric polarization. This result indicates that
the spin helicity of the proper helical magnetic ordering is essential for the
ferroelectricity in CuFe1-xAlxO2. The induction of the electric polarization by
the proper helical magnetic ordering is, however, cannot be explained by the
Katsura-Nagaosa-Balatsky model, which successfully explains the
ferroelectricity in the recently explored ferroelectric helimagnets, such as
TbMnO3. We thus conclude that CuFe1-xAlxO2 is a new class of magnetic
ferroelectrics.Comment: 4 pages, 4 figure
Spin nematic interaction in multiferroic compound BaCoGeO
We demonstrate the existence of the spin nematic interactions in an
easy-plane type antiferromagnet BaCoGeO by exploring the
magnetic anisotropy and spin dynamics. Combination of neutron scattering and
magnetic susceptibility measurements reveals that the origin of the in-plane
anisotropy is an antiferro-type interaction of the spin nematic operator. The
relation between the nematic operator and the electric polarization in the
ligand symmetry of this compound is presented. The introduction of the spin
nematic interaction is useful to understand the physics of spin and electric
dipole in multiferroic compounds.Comment: 5 pages, 4 figure
- …