809 research outputs found
When is Multimetric Gravity Ghost-free?
We study ghosts in multimetric gravity by combining the mini-superspace and
the Hamiltonian constraint analysis. We first revisit bimetric gravity and
explain why it is ghost-free. Then, we apply our method to trimetric gravity
and clarify when the model contains a ghost. More precisely, we prove trimetric
gravity generically contains a ghost. However, if we cut the interaction of a
pair of metrics, trimetric gravity becomes ghost-free. We further extend the
Hamiltonian analysis to general multimetric gravity and calculate the number of
ghosts in various models. Thus, we find multimetric gravity with loop type
interactions never becomes ghost-free.Comment: 22 pages, 6 figure
Hawking Radiation from Fluctuating Black Holes
Classically, black Holes have the rigid event horizon. However, quantum
mechanically, the event horizon of black holes becomes fuzzy due to quantum
fluctuations. We study Hawking radiation of a real scalar field from a
fluctuating black hole. To quantize metric perturbations, we derive the
quadratic action for those in the black hole background. Then, we calculate the
cubic interaction terms in the action for the scalar field. Using these
results, we obtain the spectrum of Hawking radiation in the presence of
interaction between the scalar field and the metric. It turns out that the
spectrum deviates from the Planck spectrum due to quantum fluctuations of the
metric.Comment: 35pages, 4 figure
On the Canonical Formalism for a Higher-Curvature Gravity
Following the method of Buchbinder and Lyahovich, we carry out a canonical
formalism for a higher-curvature gravity in which the Lagrangian density is given in terms of a function of the salar curvature as . The local Hamiltonian is obtained by a
canonical transformation which interchanges a pair of the generalized
coordinate and its canonical momentum coming from the higher derivative of the
metric.Comment: 11 pages, no figures, Latex fil
Magnetic and Metal-Insulator Transitions in beta-Na0.5CoO2 and gamma-K0.5CoO2 -NMR and Neutron Diffraction Studies-
Co-oxides beta-Na0.5CoO2 and gamma-K0.5CoO2 have been prepared by the Na
de-intercalation from alpha-NaCoO2 and by the floating-zone method,
respectively. It has been found that successive phase transitions take place at
temperatures Tc1 and Tc2 in both systems. The appearance of the internal
magnetic field at Tc1 with decreasing temperature T indicates that the
antiferromagnetic order exists at T < Tc1, as in gamma-Na0.5CoO2. For
beta-Na0.5CoO2, the transition temperatures and the NMR parameters determined
from the data taken for magnetically ordered state are similar to those of
gamma-Na0.5CoO2, indicating that the difference of the stacking ways of the
CoO2 layers between these systems do not significantly affect their physical
properties. For gamma-K0.5CoO2, the quantitative difference of the physical
quantities are found from those of beta- and gamma-Na0.5CoO2. The difference
between the values of Tci (i = 1 and 2) of these systems might be explained by
considering the distance between CoO2 layers.Comment: 8 pages, 14 figures, 1 Tabl
Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy
GaAs nanowires are grown by molecular beam epitaxy using a self-catalyzed,
Ga-assisted growth technique. Position control is achieved by nano-patterning a
SiO2 layer with arrays of holes with a hole diameter of 85 nm and a hole pitch
varying between 200 nm and 2 \mum. Gallium droplets form preferentially at the
etched holes acting as catalyst for the nanowire growth. The nanowires have
hexagonal cross-sections with {110} side facets and crystallize predominantly
in zincblende. The interdistance dependence of the nanowire growth rate
indicates a change of the III/V ratio towards As-rich conditions for large hole
distances inhibiting NW growth.Comment: 9 pages, 4 figure
Black holes and a scalar field in an expanding universe
We consider a model of an inhomogeneous universe including a massless scalar
field, where the inhomogeneity is assumed to consist of many black holes. This
model can be constructed by following Lindquist and Wheeler, which has already
been investigated without including scalar field to show that an averaged scale
factor coincides with that of the Friedmann model. In this work we construct
the inhomogeneous universe with an massless scalar field, where we assume that
the averaged scale factor and scalar field are given by those of the Friedmann
model including a scalar field. All of our calculations are carried out in the
framework of Brans-Dicke gravity. In constructing the model of an inhomogeneous
universe, we define the mass of a black hole in the Brans-Dicke expanding
universe which is equivalent to ADM mass if the mass evolves adiabatically, and
obtain an equation relating our mass to the averaged scalar field and scale
factor. As the results we find that the mass has an adiabatic time dependence
in a sufficiently late stage of the expansion of the universe, and that the
time dependence is qualitatively diffenrent according to the sign of the
curvature of the universe: the mass increases decelerating in the closed
universe case, is constant in the flat case and decreases decelerating in the
open case. It is also noted that the mass in the Einstein frame depends on
time. Our results that the mass has a time dependence should be retained even
in the general scalar-tensor gravitiy with a scalar field potential.
Furthermore, we discuss the relation of our results to the uniqueness theorem
of black hole spacetime and gravitational memory effect.Comment: 16 pages, 3 tables, 5 figure
Quantum phase transition in a minimal model for the Kondo effect in a Josephson junction
We propose a minimal model for the Josephson current through a quantum dot in
a Kondo regime. We start with the model that consists of an Anderson impurity
connected to two superconducting (SC) leads with the gaps
, where for the lead at left and right. We show that, when one of the SC gaps is
much larger than the others , the starting model can
be mapped exactly onto the single-channel model, which consists of the right
lead of and the Anderson impurity with an extra onsite SC gap of
. Here and are
defined with respect to the starting model, and is the level width
due to the coupling with the left lead. Based on this simplified model, we
study the ground-state properties for the asymmetric gap, , using the numerical renormalization group (NRG) method. The
results show that the phase difference of the SC gaps , which induces the Josephson current, disturbs the screening of the
local moment to destabilize the singlet ground state typical of the Kondo
system. It can also drive the quantum phase transition to a magnetic doublet
ground state, and at the critical point the Josephson current shows a
discontinuous change. The asymmetry of the two SC gaps causes a re-entrant
magnetic phase, in which the in-gap bound state lies close to the Fermi level.Comment: 23 pages, 13 figures, typos are correcte
Angle-dependent magnetoresistance in the weakly incoherent interlayer transport regime
We present comparative studies of the orientation effect of a strong magnetic
field on the interlayer resistance of -(BEDT-TTF)KHg(SCN)
samples characterized by different crystal quality. We find striking
differences in their behavior which is attributed to the breakdown of the
coherent charge transport across the layers in the lower quality sample. In the
latter case, the nonoscillating magnetoresistance background is essentially a
function of only the out-of-plane field component, in contradiction to the
existing theory.Comment: 4 pges, 3 figure
Single Impurity Effects in Multiband Superconductors with Different Sign Order Parameters
A single impurity problem is investigated for multiband s-wave
superconductors with different sign order parameters (+-s-wave superconductors)
suggested in Fe-pnictide superconductors. Not only intraband but also interband
scattering is considered at the impurity. The latter gives rise to
impurity-induced local boundstates close to the impurity. We present an exact
form of the energy of the local boundstates as a function of strength of the
two types of impurity scattering. The essential role of the impurity is
unchanged in finite number of impurities. The main conclusions for a single
impurity problem help us understand effects of dense impurities in the +-s-wave
superconductors. Local density of states around the single impurity is also
investigated. We suggest impurity site nuclear magnetic resonance as a suitable
experiment to probe the local boundstates that is peculiar to the +-s-wave
state. We find that the +-s-wave model is mapped to a chiral dx2-y2+-idxy-wave,
reflecting the unconventional nature of the sign reversing order parameter. For
a quantum magnetic impurity, interband scattering destabilizes the Kondo
singlet.Comment: 23 pages, 7 figures, to be published in J. Phys. Soc. Jpn. (2009) No.
A different look at the spin state of Co ions in CoO pyramidal coordination
Using soft-x-ray absorption spectroscopy at the Co- and O- edges,
we demonstrate that the Co ions with the CoO pyramidal
coordination in the layered SrCoOCl compound are unambiguously in the
high spin state. Our result questions the reliability of the spin state
assignments made so far for the recently synthesized layered cobalt
perovskites, and calls for a re-examination of the modeling for the complex and
fascinating properties of these new materials.Comment: 5 pages 3 figure
- …
