459 research outputs found

    Factors affecting continued use of ceramic water purifiers distributed to Tsunami-affected Communities in Sri Lanka

    Get PDF
    Objectives  There is little information about continued use of point-of-use technologies after disaster relief efforts. After the 2004 tsunami, the Red Cross distributed ceramic water filters in Sri Lanka. This study determined factors associated with filter disuse and evaluate the quality of household drinking water. Methods  A cross-sectional survey of water sources and treatment, filter use and household characteristics was administered by in-person oral interview, and household water quality was tested. Multivariable logistic regression was used to model probability of filter non-use. Results  At the time of survey, 24% of households (107/452) did not use filters; the most common reason given was breakage (42%). The most common household water sources were taps and wells. Wells were used by 45% of filter users and 28% of non-users. Of households with taps, 75% had source water Escherichia coli in the lowest World Health Organisation risk category (<1/100 ml), vs. only 30% of households reporting wells did. Tap households were approximately four times more likely to discontinue filter use than well households. Conclusion  After 2 years, 24% of households were non-users. The main factors were breakage and household water source; households with taps were more likely to stop use than households with wells. Tap water users also had higher-quality source water, suggesting that disuse is not necessarily negative and monitoring of water quality can aid decision-making about continued use. To promote continued use, disaster recovery filter distribution efforts must be joined with capacity building for long-term water monitoring, supply chains and local production

    The compartment bag test (CBT) for enumerating fecal indicator bacteria: Basis for design and interpretation of results

    Get PDF
    For the past several years, the compartment bag test (CBT) has been employed in water quality monitoring and public health protection around the world. To date, however, the statistical basis for the design and recommended procedures for enumerating fecal indicator bacteria (FIB) concentrations from CBT results have not been formally documented. Here, we provide that documentation following protocols for communicating the evolution of similar water quality testing procedures. We begin with an overview of the statistical theory behind the CBT, followed by a description of how that theory was applied to determine an optimal CBT design. We then provide recommendations for interpreting CBT results, including procedures for estimating quantiles of the FIB concentration probability distribution, and the confidence of compliance with recognized water quality guidelines. We synthesize these values in custom user-oriented 'look-up' tables similar to those developed for other FIB water quality testing methods. Modified versions of our tables are currently distributed commercially as part of the CBT testing kit

    Local drinking water filters reduce diarrheal disease in Cambodia: a randomized, controlled trial of the ceramic water purifier.

    Get PDF
    A randomized, controlled intervention trial of two household-scale drinking water filters was conducted in a rural village in Cambodia. After collecting four weeks of baseline data on household water quality, diarrheal disease, and other data related to water use and handling practices, households were randomly assigned to one of three groups of 60 households: those receiving a ceramic water purifier (CWP), those receiving a second filter employing an iron-rich ceramic (CWP-Fe), and a control group receiving no intervention. Households were followed for 18 weeks post-baseline with biweekly follow-up. Households using either filter reported significantly less diarrheal disease during the study compared with a control group of households without filters as indicated by longitudinal prevalence ratios CWP: 0.51 (95% confidence interval [CI]: 0.41-0.63); CWP-Fe: 0.58 (95% CI: 0.47-0.71), an effect that was observed in all age groups and both sexes after controlling for clustering within households and within individuals over time

    Bacterial Contamination on Household Toys and Association with Water, Sanitation and Hygiene Conditions in Honduras

    Get PDF
    There is growing evidence that household water treatment interventions improve microbiological water quality and reduce diarrheal disease risk. Few studies have examined, however, the impact of water treatment interventions on household-level hygiene and sanitation. This study examined the association of four water and sanitation conditions (access to latrines, improved sanitation, improved water and the plastic biosand filter) on the levels of total coliforms and E. coli on existing and introduced toys during an on-going randomized controlled trial of the plastic biosand filter (plastic BSF). The following conditions were associated with decreased bacterial contamination on children’s toys: access to a latrine, access to improved sanitation and access to the plastic BSF. Overall, compared to existing toys, introduced toys had significantly lower levels of both E. coliand total coliforms. Results suggest that levels of fecal indicator bacteria contamination on children’s toys may be associated with access to improved water and sanitation conditions in the home. In addition, the fecal indicator bacteria levels on toys probably vary with duration in the household. Additional information on how these toys become contaminated is needed to determine the usefulness of toys as indicators or sentinels of water, sanitation and hygiene conditions, behaviors and risks

    Reduction of Norwalk Virus, Poliovirus 1, and Bacteriophage MS2 by Ozone Disinfection of Water

    Get PDF
    Norwalk virus and other human caliciviruses (noroviruses) are major agents of gastroenteritis, and water is a major route of their transmission. In an effort to control Norwalk virus in drinking water, Norwalk virus reduction by bench-scale ozone disinfection was determined using quantitative reverse transcription (RT)-PCR for virus assays. Two other enteric viruses, poliovirus 1 and coliphage MS2, were included for comparison, and their reductions were assayed by infectivity assays as well as by RT-PCR. Virus reductions by ozone were determined using a dose of 0.37 mg of ozone/liter at pH 7 and 5°C for up to 5 min. Based on two RT-PCR assays, the reductions of Norwalk virus were >3 log10 within a contact time of 10 s, and these were similar to the reductions of the other two viruses determined by the same assay methods. Also, the virus reductions detected by RT-PCR assays were similar to those detected by infectivity assays, indicating that the RT-PCR assay is a reliable surrogate assay for both culturable and nonculturable viruses disinfected with ozone. Overall, the results of this study indicate that Norwalk virus as well as other enteric viruses can be reduced rapidly and extensively by ozone disinfection and that RT-PCR is a useful surrogate assay for both culturable and nonculturable viruses disinfected with ozone

    Evaluation of the Impact of the Plastic BioSand Filter on Health and Drinking Water Quality in Rural Tamale, Ghana

    Get PDF
    A randomized controlled trial of the plastic BioSand filter (BSF) was performed in rural communities in Tamale (Ghana) to assess reductions in diarrheal disease and improvements in household drinking water quality. Few studies of household water filters have been performed in this region, where high drinking water turbidity can be a challenge for other household water treatment technologies. During the study, the longitudinal prevalence ratio for diarrhea comparing households that received the plastic BSF to households that did not receive it was 0.40 (95% confidence interval: 0.05, 0.80), suggesting an overall diarrheal disease reduction of 60%. The plastic BSF achieved a geometric mean reduction of 97% and 67% for E. coli and turbidity, respectively. These results suggest the plastic BSF significantly improved drinking water quality and reduced diarrheal disease during the short trial in rural Tamale, Ghana. The results are similar to other trials of household drinking water treatment technologies

    Effects of Air Temperature and Relative Humidity on Coronavirus Survival on Surfaces

    Get PDF
    Assessment of the risks posed by severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) on surfaces requires data on survival of this virus on environmental surfaces and on how survival is affected by environmental variables, such as air temperature (AT) and relative humidity (RH). The use of surrogate viruses has the potential to overcome the challenges of working with SARS-CoV and to increase the available data on coronavirus survival on surfaces. Two potential surrogates were evaluated in this study; transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) were used to determine effects of AT and RH on the survival of coronaviruses on stainless steel. At 4°C, infectious virus persisted for as long as 28 days, and the lowest level of inactivation occurred at 20% RH. Inactivation was more rapid at 20°C than at 4°C at all humidity levels; the viruses persisted for 5 to 28 days, and the slowest inactivation occurred at low RH. Both viruses were inactivated more rapidly at 40°C than at 20°C. The relationship between inactivation and RH was not monotonic, and there was greater survival or a greater protective effect at low RH (20%) and high RH (80%) than at moderate RH (50%). There was also evidence of an interaction between AT and RH. The results show that when high numbers of viruses are deposited, TGEV and MHV may survive for days on surfaces at ATs and RHs typical of indoor environments. TGEV and MHV could serve as conservative surrogates for modeling exposure, the risk of transmission, and control measures for pathogenic enveloped viruses, such as SARS-CoV and influenza virus, on health care surfaces

    The operation, flow conditions and microbial reductions of an intermittently operated, household-scale slow sand filter

    Get PDF
    Nearly one-fifth of the world\u27s population lacks access to safe, reliable sources of drinking water. Point of use (POU) household water treatment technology allows people to improve the quality of their water by treating it in the home. A promising emerging POU technology is the biosand filter (BSF). The BSF is a household-scale, intermittently operated slow sand filter that maintains a wet media bed containing a schmutzdecke and allows periodic water dosing by the user. Step input chemical tracer tests indicated that the BSF operates at near-plug flow conditions. Six-to-eight week longitudinal challenge studies were conducted with daily charges of surface water spiked with E. coli strain B bacteria, coliphages MS2 and PRD-1 and human enteric virus echovirus type 12. The BSF ripened in a manner similar to conventional SSFs. Flow rate slowed and microbial reductions improved over time with ripening. E. coli reductions were ~90% following filter startup but improved to 95—99.5% over time. Microbial reductions were greater with greater residence time within the filter, especially for water retained in the filter bed overnight. E. coli and echovirus 12 reductions were greater than those of coliphages MS2 and PRD-1

    Identification of Particle Size Classes Inhibiting Protozoan Recovery from Surface Water Samples via U.S. Environmental Protection Agency Method 1623

    Get PDF
    Giardia species recovery by U.S. Environmental Protection Agency method 1623 appears significantly impacted by a wide size range (2 to 30 ÎŒm) of particles in water and organic matter. Cryptosporidium species recovery seems negatively correlated only with smaller (2 to 10 ÎŒm), presumably inorganic particles. Results suggest constituents and mechanisms interfering with method performance may differ by protozoan type
    • 

    corecore