33,310 research outputs found
Spatial eye–hand coordination during bimanual reaching is not systematically coded in either LIP or PRR
Significance
When we reach for something, we also look at it. If we reach for two objects at once, one with each hand, we look first at one and then the other. It is not known which brain areas underlie this coordination. We studied two parietal areas known to be involved in eye and arm movements. Neither area was sensitive to the order in which the targets were looked at. This implies that coordinated saccades are driven by downstream areas and not by the parietal cortex as is commonly assumed.</jats:p
Method of crystallization
A method is described for refining or growing bulk single crystals in an environment substantially free of gravity. The base material is suspended, positioned, and shaped as a containerless melt by wetting forces. Because no crucible is required, high temperature refractory materials can be processed
Tool for installing or extracting small bulbs in limited-access spaces
Installing and extracting component of tool is plastic tubing with inside diameter which provides snug fit over bulb. Other components, which provide sturdiness and ease of operation, consist of metal tube, with collar near one end, and plunger, with knob on one end and Teflon tip on the other
Electrophoresis device
A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected
Moving wall, continuous flow electronphoresis apparatus
This invention relates generally to electrophoresis devices and more particularly to a moving wall, continuous flow device in which an electrophoresis chamber is angularly positionable with respect to the direction of moving belt walls. A frame with an electrophoresis chamber is rotatably supported between two synchronously driven belt walls. This allows the chamber to be angularly positionable with respect to the direction of belt travel, which compensates for electroosmotic flow within the electrophoresis chamber. Injection of a buffer solution via an opening and a homogenous sample stream via another opening is performed at the end of a chamber, and collection of buffer and the fractionated species particles is done by a conventional collection array at an opposite end of the chamber. Belts are driven at a rate which exactly matches the flow of buffer and sample through the chamber, which entrains the buffer to behave as a rigid electrophoretic medium, eliminating flow distortions (Poiseuille effect). Additionally, belt material for each belt is stored at one end of the device and is taken up by drive wheels at an opposite end. The novelty of this invention particularly lies in the electrophoresis chamber being angularly positionable between two moving belt walls in order to compensate for electroosmotic flow. Additionally, new belt material is continuously exposed within the chamber, minimizing flow distortion due to contamination of the belt material by the sample
Calibration of averaging total pressure flight wake rake and natural-laminar-flow airfoil drag certification
An averaging total pressure wake rake used by the Cessna Aircraft Company in flight tests of a modified 210 airplane with a laminar flow wing was calibrated in wind tunnel tests against a five-tube pressure probe. The model generating the wake was a full-scale model of the Cessna airplane wing. Indications of drag trends were the same for both instruments
A review of the planform effects on the low-speed aerodynamic characteristics of triangular and modified triangular wings
Planform effects on low speed aerodynamic characteristics of triangular and modified triangular wing
Preparative electrophoresis for space
A premise of continuous flow electrophoresis is that removal of buoyance-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chamber are used, distortion of the injected sample stream due to electrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field were not considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection
Effects of chemical equilibrium on turbine engine performance for various fuels and combustor temperatures
A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis
- …