20,015 research outputs found
The Cosmic Ray Observatory Project: A Statewide Outreach and Education Experiment in Nebraska
The Cosmic Ray Observatory Project (CROP) is a statewide education and
research experiment involving Nebraska high school students, teachers and
university undergraduates in the study of extensive cosmic-ray air showers. A
network of high school teams construct, install, and operate school-based
detectors in coordination with University of Nebraska physics professors and
graduate students. The detector system at each school is an array of
scintillation counters recycled from the Chicago Air Shower Array in
weather-proof enclosures on the school roof, with a GPS receiver providing a
time stamp for cosmic-ray events. The detectors are connected to triggering
electronics and a data-acquisition PC inside the building. Students share data
via the Internet to search for time coincidences with other sites. Funded by
the National Science Foundation, CROP has enlisted 29 schools with the aim of
expanding to the 314 high schools in the state over several years. This report
highlights both the scientific and professional development achievements of the
project to date.Comment: 4 pages, 4 figures, submitted to the 2007 International Cosmic Ray
Conference (ICRC2007), Merida, Mexico, July 200
Performance Analysis and Enhancement of Multiband OFDM for UWB Communications
In this paper, we analyze the frequency-hopping orthogonal frequency-division
multiplexing (OFDM) system known as Multiband OFDM for high-rate wireless
personal area networks (WPANs) based on ultra-wideband (UWB) transmission.
Besides considering the standard, we also propose and study system performance
enhancements through the application of Turbo and Repeat-Accumulate (RA) codes,
as well as OFDM bit-loading. Our methodology consists of (a) a study of the
channel model developed under IEEE 802.15 for UWB from a frequency-domain
perspective suited for OFDM transmission, (b) development and quantification of
appropriate information-theoretic performance measures, (c) comparison of these
measures with simulation results for the Multiband OFDM standard proposal as
well as our proposed extensions, and (d) the consideration of the influence of
practical, imperfect channel estimation on the performance. We find that the
current Multiband OFDM standard sufficiently exploits the frequency selectivity
of the UWB channel, and that the system performs in the vicinity of the channel
cutoff rate. Turbo codes and a reduced-complexity clustered bit-loading
algorithm improve the system power efficiency by over 6 dB at a data rate of
480 Mbps.Comment: 32 pages, 10 figures, 1 table. Submitted to the IEEE Transactions on
Wireless Communications (Sep. 28, 2005). Minor revisions based on reviewers'
comments (June 23, 2006
Error Rate Analysis for Coded Multicarrier Systems over Quasi-Static Fading Channels
This paper presents two methods for approximating the performance of coded
multicarrier systems operating over frequency-selective, quasi-static fading
channels with non-ideal interleaving. The first method is based on
approximating the performance of the system over each realization of the
channel, and is suitable for obtaining the outage performance of this type of
system. The second method is based on knowledge of the correlation matrix of
the frequency-domain channel gains and can be used to directly obtain the
average performance. Both of the methods are applicable for
convolutionally-coded interleaved systems employing Quadrature Amplitude
Modulation (QAM). As examples, both methods are used to study the performance
of the Multiband Orthogonal Frequency Division Multiplexing (OFDM) proposal for
high data-rate Ultra-Wideband (UWB) communication.Comment: 5 pages, 3 figures, 2 tables. Submitted to Globecom 200
Electromagnetic launch of lunar material
Lunar soil can become a source of relatively inexpensive oxygen propellant for vehicles going from low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) and beyond. This lunar oxygen could replace the oxygen propellant that, in current plans for these missions, is launched from the Earth's surface and amounts to approximately 75 percent of the total mass. The reason for considering the use of oxygen produced on the Moon is that the cost for the energy needed to transport things from the lunar surface to LEO is approximately 5 percent the cost from the surface of the Earth to LEO. Electromagnetic launchers, in particular the superconducting quenchgun, provide a method of getting this lunar oxygen off the lunar surface at minimal cost. This cost savings comes from the fact that the superconducting quenchgun gets its launch energy from locally supplied, solar- or nuclear-generated electrical power. We present a preliminary design to show the main features and components of a lunar-based superconducting quenchgun for use in launching 1-ton containers of liquid oxygen, one every 2 hours. At this rate, nearly 4400 tons of liquid oxygen would be launched into low lunar orbit in a year
New Insights on Interstellar Gas-Phase Iron
In this paper, we report on the gas-phase abundance of singly-ionized iron
(Fe II) for 51 lines of sight, using data from the Far Ultraviolet
Spectroscopic Explorer (FUSE). Fe II column densities are derived by measuring
the equivalent widths of several ultraviolet absorption lines and subsequently
fitting those to a curve of growth. Our derivation of Fe II column densities
and abundances creates the largest sample of iron abundances in moderately- to
highly-reddened lines of sight explored with FUSE, lines of sight that are on
average more reddened than lines of sight in previous Copernicus studies. We
present three major results. First, we observe the well-established correlation
between iron depletion and and also find trends between iron depletion
and other line of sight parameters (e.g. f(H_2), E_(B-V), and A_V), and examine
the significance of these trends. Of note, a few of our lines of sight probe
larger densities than previously explored and we do not see significantly
enhanced depletion effects. Second, we present two detections of an extremely
weak Fe II line at 1901.773 A in the archival STIS spectra of two lines of
sight (HD 24534 and HD 93222). We compare these detections to the column
densities derived through FUSE spectra and comment on the line's f-value and
utility for future studies of Fe II. Lastly, we present strong anecdotal
evidence that the Fe II f-values derived empirically through FUSE data are more
accurate than previous values that have been theoretically calculated, with the
probable exception of f_1112.Comment: Accepted for publication in ApJ, 669, 378; see ApJ version for small
updates. 53 total pages (preprint format), 7 tables, 11 figure
Force reflecting hand controller
A universal input device for interfacing a human operator with a slave machine such as a robot or the like includes a plurality of serially connected mechanical links extending from a base. A handgrip is connected to the mechanical links distal from the base such that a human operator may grasp the handgrip and control the position thereof relative to the base through the mechanical links. A plurality of rotary joints is arranged to connect the mechanical links together to provide at least three translational degrees of freedom and at least three rotational degrees of freedom of motion of the handgrip relative to the base. A cable and pulley assembly for each joint is connected to a corresponding motor for transmitting forces from the slave machine to the handgrip to provide kinesthetic feedback to the operator and for producing control signals that may be transmitted from the handgrip to the slave machine. The device gives excellent kinesthetic feedback, high-fidelity force/torque feedback, a kinematically simple structure, mechanically decoupled motion in all six degrees of freedom, and zero backlash. The device also has a much larger work envelope, greater stiffness and responsiveness, smaller stowage volume, and better overlap of the human operator's range of motion than previous designs
The rate of mass loss and variations in the wind from the Be star delta Centauri
Copernicus ultraviolet scans of the Be star delta Centauri obtained in 1976 and 1979, show a significant variation in the Si III lambda 1206 profile, The strong asymmetry that was present in 1976 had disappeared by 1979. The Si IV lambda 1400 doublet was also asymmetric in 1976, but was not observed in 1979. A quantitative fit of the line shapes to theoretical wind profiles shows that the mass-loss rate in 1976 was 2 x 10 to the minus 8th power/yr, and that the rate of mass loss in Si III was at least one order of magnitude less in 1979. It is not possible to determine whether the variation represented an overall change in the lass-loss rate, or whether it was due to a change in the ionization balance. The profile fitting procedure resulted in the adoption of assumed underlying photospheric Si III and Si IV profiles, and the equivalent widths measured from these profiles are most consistent with T sub eff between 30,000 and 35,000 K, somewhat hotter than implied by the spectral classification normally assigned to this star. The ultraviolet photospheric line widths, coupled wit published theoretical analyses of rotational gravitational darkening, imply an intrinsic equatorial velocity of about 310 km/sec and an angle of inclination of the rotational axis to the line of sight of i is less than or equal to 44 deg
The ultraviolet extinction in M-supergiant circumstellar envelopes
Using International Ultraviolet (IUS) archival low-dispersion spectra, ultraviolet spectral extinctions were derived for the circumstellar envelopes of two M supergiants: HD 60414 and HD 213310. The observed stellar systems belong to a class of widely-separated spectroscopic binaries that are called VV Cephei stars. The total extinction was calculated by dividing the reddened fluxes with unreddened comparison fluxes of similar stars (g B2.5 for HD 213310 and a normalized s+B3 for HD 60414) from the reference atlas. After substracting the interstellar extinctions, which were estimated from the E(B-V) reddening of nearby stars, the resultant circumstellar extinctions were normalized at about 3.5 inverse microns. Not only is the 2175 A extinction bump absent in the circumstellar extinctions, but the far-ultraviolet extinction rise is also absent. The rather flat, ultraviolet extinction curves were interpreted as signatures of a population of noncarbonaceous, oxygen-rich grains with diameters larger than the longest observed wavelength
- …