1 research outputs found
Eigenlogic: a Quantum View for Multiple-Valued and Fuzzy Systems
We propose a matrix model for two- and many-valued logic using families of
observables in Hilbert space, the eigenvalues give the truth values of logical
propositions where the atomic input proposition cases are represented by the
respective eigenvectors. For binary logic using the truth values {0,1} logical
observables are pairwise commuting projectors. For the truth values {+1,-1} the
operator system is formally equivalent to that of a composite spin 1/2 system,
the logical observables being isometries belonging to the Pauli group. Also in
this approach fuzzy logic arises naturally when considering non-eigenvectors.
The fuzzy membership function is obtained by the quantum mean value of the
logical projector observable and turns out to be a probability measure in
agreement with recent quantum cognition models. The analogy of many-valued
logic with quantum angular momentum is then established. Logical observables
for three-value logic are formulated as functions of the Lz observable of the
orbital angular momentum l=1. The representative 3-valued 2-argument logical
observables for the Min and Max connectives are explicitly obtained.Comment: 11 pages, 2 table