2,212 research outputs found

    Actively deployable mobile services for adaptive web access

    Get PDF
    2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Recent Advances Concerning Certain Class of Geophysical Flows

    Full text link
    This paper is devoted to reviewing several recent developments concerning certain class of geophysical models, including the primitive equations (PEs) of atmospheric and oceanic dynamics and a tropical atmosphere model. The PEs for large-scale oceanic and atmospheric dynamics are derived from the Navier-Stokes equations coupled to the heat convection by adopting the Boussinesq and hydrostatic approximations, while the tropical atmosphere model considered here is a nonlinear interaction system between the barotropic mode and the first baroclinic mode of the tropical atmosphere with moisture. We are mainly concerned with the global well-posedness of strong solutions to these systems, with full or partial viscosity, as well as certain singular perturbation small parameter limits related to these systems, including the small aspect ratio limit from the Navier-Stokes equations to the PEs, and a small relaxation-parameter in the tropical atmosphere model. These limits provide a rigorous justification to the hydrostatic balance in the PEs, and to the relaxation limit of the tropical atmosphere model, respectively. Some conditional uniqueness of weak solutions, and the global well-posedness of weak solutions with certain class of discontinuous initial data, to the PEs are also presented.Comment: arXiv admin note: text overlap with arXiv:1507.0523

    Giant schwannoma of thoracic vertebra: A case report

    Get PDF
    BACKGROUND,It is relatively rare for schwannomas to invade bone, but it is very rare for a large,mass to form concurrently in the paravertebral region. Surgical resection is the,only effective treatment. Because of the extensive tumor involvement and the,many important surrounding structures, the tumor needs to be fully exposed.,Most of the tumors are completely removed by posterior combined open-heart,surgery to relieve spinal cord compression, restore the stability of the spine and,maximize the recovery of nerve and spinal cord function. The main objective of,this article is to present a schwannoma that had invaded the T5 and T6 vertebral,bodies and formed a large paravertebral mass with simultaneous invasion of the,spinal canal and compression of the spinal cord.,CASE SUMMARY,A 40-year-old female suffered from intermittent chest and back pain for 8 years.,Computed tomography and magnetic resonance imaging scans showed a,paravertebral tumor of approximately 86 mm × 109 mm × 116 mm, where the,adjacent T5 and T6 vertebral bodies were invaded by the tumor, the right intervertebral,foramen was enlarged, and the tumor had invaded the spinal canal to,compress the thoracic medulla. The preoperative puncture biopsy diagnosed a,benign schwannoma. Complete resection of the tumor was achieved by a two-step,operation. In the first step, the thoracic surgeon adopted a lateral approach to,separate the thoracic tumor from the lung. In the second step, a spine surgeon,performed a posterior midline approach to dissect the tumor from the vertebral,junction through removal of the tumor from the posterior side and further,resection of the entire T5 and T6 vertebral bodies. The large bone defect was,reconstructed with titanium mesh, and the posterior root arch was nail-fixed. Due,to the large amount of intraoperative bleeding, we performed tumor angioembolization,before surgery to reduce and avoid large intraoperative bleeding. The,postoperative diagnosis of benign schwannoma was confirmed by histochemical,examination. There was no sign of tumor recurrence or spinal instability during,the 2-year follow-up.,CONCLUSION,Giant schwannoma is uncommon. In this case, a complete surgical resection of a,giant thoracic nerve sheath tumor that invaded part of the vertebral body and,compressed the spinal cord was safe and effective

    Gravitational Chern-Simons Lagrangians and black hole entropy

    Get PDF
    We analyze the problem of defining the black hole entropy when Chern-Simons terms are present in the action. Extending previous works, we define a general procedure, valid in any odd dimensions both for purely gravitational CS terms and for mixed gauge-gravitational ones. The final formula is very similar to Wald's original formula valid for covariant actions, with a significant modification. Notwithstanding an apparent violation of covariance we argue that the entropy formula is indeed covariant.Comment: 39 page

    Black Holes in Gravity with Conformal Anomaly and Logarithmic Term in Black Hole Entropy

    Full text link
    We present a class of exact analytic and static, spherically symmetric black hole solutions in the semi-classical Einstein equations with Weyl anomaly. The solutions have two branches, one is asymptotically flat and the other asymptotically de Sitter. We study thermodynamic properties of the black hole solutions and find that there exists a logarithmic correction to the well-known Bekenstein-Hawking area entropy. The logarithmic term might come from non-local terms in the effective action of gravity theories. The appearance of the logarithmic term in the gravity side is quite important in the sense that with this term one is able to compare black hole entropy up to the subleading order, in the gravity side and in the microscopic statistical interpretation side.Comment: Revtex, 10 pages. v2: minor changes and to appear in JHE

    Dynamics of one-dimensional tight-binding models with arbitrary time-dependent external homogeneous fields

    Full text link
    The exact propagators of two one-dimensional systems with time-dependent external fields are presented by following the path-integral method. It is shown that the Bloch acceleration theorem can be generalized to the impulse-momentum theorem in quantum version. We demonstrate that an evolved Gaussian wave packet always keeps its shape in an arbitrary time-dependent homogeneous driven field. Moreover, that stopping and accelerating of a wave packet can be achieved by the pulsed field in a diabatic way.Comment: 8 pages, 6 figure

    The effects of degree correlations on network topologies and robustness

    Full text link
    Complex networks have been applied to model numerous interactive nonlinear systems in the real world. Knowledge about network topology is crucial for understanding the function, performance and evolution of complex systems. In the last few years, many network metrics and models have been proposed to illuminate the network topology, dynamics and evolution. Since these network metrics and models derive from a wide range of studies, a systematic study is required to investigate the correlations between them. The present paper explores the effect of degree correlation on the other network metrics through studying an ensemble of graphs where the degree sequence (set of degrees) is fixed. We show that to some extent, the characteristic path length, clustering coefficient, modular extent and robustness of networks are directly influenced by the degree correlation.Comment: 13 pages, 6 figure

    New Near Horizon Limit in Kerr/CFT

    Full text link
    The extremal Kerr black hole with the angular momentum J is conjectured to be dual to CFT with central charges c_L=c_R=12J. However, the central charge in the right sector remains to be explicitly derived so far. In order to investigate this issue, we introduce new near horizon limits of (near) extremal Kerr and five-dimensional Myers-Perry black holes. We obtain Virasoro algebras as asymptotic symmetries and calculate the central charges associated with them. One of them is equivalent to that of the previous studies, and the other is non-zero, but still the order of near extremal parameter. Redefining the algebras to take the standard form, we obtain a finite value as expected by the Kerr/CFT correspondence.Comment: 25 pages, minor changes, references adde
    • 

    corecore