46 research outputs found

    Timing of host feeding drives rhythms in parasite replication

    Get PDF
    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the hosts' peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the hosts' peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new arena for studying host-parasite-vector coevolution and has broad implications for applied bioscience

    Chronotype Genetic Variant in PER2 is Associated with Intrinsic Circadian Period in Humans

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData Availability: The data that support the findings of this study from the UK BioBank will be made available at https://sleepgenetics.org and the underlying genotype and phenotype data are available through application to the UK Biobank. Other phenotype data are available on request, due to privacy or other restrictions, through co-corresponding author Dr. Scheer ([email protected]).The PERIOD2 (PER2) gene is a core molecular component of the circadian clock and plays an important role in the generation and maintenance of daily rhythms. rs35333999, a missense variant of PER2 common in European populations, has been shown to associate with later chronotype. Chronotype relates to the timing of biological and behavioral activities, including when we sleep, eat, and exercise, and later chronotype is associated with longer intrinsic circadian period (cycle length), a fundamental property of the circadian system. Thus, we tested whether this PER2 variant was associated with circadian period and found significant associations with longer intrinsic circadian period as measured under forced desynchrony protocols, the ‘gold standard’ for intrinsic circadian period assessment. Minor allele (T) carriers exhibited significantly longer circadian periods when determinations were based on either core body temperature or plasma melatonin measurements, as compared to non-carriers (by 12 and 11 min, respectively; accounting for ~7% of inter-individual variance). These findings provide a possible underlying biological mechanism for inter-individual differences in chronotype, and support the central role of PER2 in the human circadian timing system.European CommissionWellcome TrustMedical Research Council (MRC

    Melatonin and its agonists: an update

    No full text

    Melatonin and its agonists: an update

    No full text

    Melatonin phase-shifts human circadian rhythms with no evidence of changes in the duration of endogenous melatonin secretion or the 24-hour production of reproductive hormones

    No full text
    The pineal hormone melatonin is a popular treatment for sleep and circadian rhythm disruption. Melatonin administered at optimal times of the day for treatment often results in a prolonged melatonin profile. In photoperiodic (day length-dependent) species, changes in melatonin profile duration influence the timing of seasonal rhythms. We investigated the effects of an artificially prolonged melatonin profile on endogenous melatonin and cortisol rhythms, wrist actigraphy, and reproductive hormones in humans. Eight healthy men took part in this double-blind, crossover study. Surge/sustained release melatonin (1.5 mg) or placebo was administered for 8 d at the beginning of a 16-h sleep opportunity (1600 h to 0800 h) in dim light. Compared with placebo, melatonin administration advanced the timing of endogenous melatonin and cortisol rhythms. Activity was reduced in the first half and increased in the second half of the sleep opportunity with melatonin; however, total activity during the sleep opportunities and wake episodes was not affected. Melatonin treatment did not affect the endogenous melatonin profile duration, pituitary/gonadal hormone levels (24-h), or sleepiness and mood levels on the subsequent day. In the short term, suitably timed sustained-release melatonin phase-shifts circadian rhythms and redistributes activity during a 16-h sleep opportunity, with no evidence of changes in the duration of endogenous melatonin secretion or pituitary/gonadal hormones
    corecore