190 research outputs found

    Iron localization in Acarospora colonizing schist on Signy Island

    Get PDF
    A small, inconspicuous lichen, Acarospora cf. badiofusca, was discovered colonizing ironstained quartz mica schists on the lower slope of Manhaul Rock, a recently exposed nunatak on the McLeod Glacier, Signy Island, South Orkney Islands. Thallus colour ranged from rust on exposed rock surfaces to paler orange and green in shaded crevices. This study addressed the hypothesis that colour reflects element localization, and considered substance localization within lichen tissues and responses to stress. Electron microprobe analysis of specimens confirmed that Fe is localized principally in the outer rust-coloured part of the cortex, confirming that the colour reflects Fe localization. Oxalates, widely reported as contributing to tolerance mechanisms to environmental stress, were not detected using X-ray diffraction. The upper thallus surface consisted of sub-micron particulate phases containing Fe, Al and O, suggesting mixed oxide/ hydroxide phases are present and play a role in photoprotection

    CP violation in a multi-Higgs doublet model with flavor changing neutral current

    Full text link
    We study CP violation in a multi-Higgs doublet model based on a S3×Z3S_3 \times Z_3 horizontal symmetry where CKM phase is not the principal source of CP violation. We consider two mechanisms for CP violation in this model: a) CP violation due to complex Yukawa couplings; and b) CP violation due to scalar-pseudoscalar Higgs boson mixings. Both mechanisms can explain the observed CP violation in the neutral Kaon system. ϵ/ϵ\epsilon'/\epsilon due to neutral Higgs boson exchange is small in both mechanisms, but charged Higgs boson con- tributions can be as large as 10310^{-3} for a), and 10410^{-4} for b). CP violation in the neutral B system is, however, quite different from the Minimal Standard Model. The neutron Electric Dipole Moment can be as large as the present ex- perimental bound, and can be used to constrain charged Higgs boson masses. The electron EDM is one order of magnitude below the experimental bound in case b) and smaller in case a).Comment: 22 pages, Revtex, OITS-52

    Solar Wind Turbulence and the Role of Ion Instabilities

    Get PDF
    International audienc

    Development and potential role of type-2 sodium-glucose transporter inhibitors for management of type 2 diabetes

    Get PDF
    There is a recognized need for new treatment options for type 2 diabetes mellitus (T2DM). Recovery of glucose from the glomerular filtrate represents an important mechanism in maintaining glucose homeostasis and represents a novel target for the management of T2DM. Recovery of glucose from the glomerular filtrate is executed principally by the type 2 sodium-glucose cotransporter (SGLT2). Inhibition of SGLT2 promotes glucose excretion and normalizes glycemia in animal models. First reports of specifically designed SGLT2 inhibitors began to appear in the second half of the 1990s. Several candidate SGLT2 inhibitors are currently under development, with four in the later stages of clinical testing. The safety profile of SGLT2 inhibitors is expected to be good, as their target is a highly specific membrane transporter expressed almost exclusively within the renal tubules. One safety concern is that of glycosuria, which could predispose patients to increased urinary tract infections. So far the reported safety profile of SGLT2 inhibitors in clinical studies appears to confirm that the class is well tolerated. Where SGLT2 inhibitors will fit in the current cascade of treatments for T2DM has yet to be established. The expected favorable safety profile and insulin-independent mechanism of action appear to support their use in combination with other antidiabetic drugs. Promotion of glucose excretion introduces the opportunity to clear calories (80–90 g [300–400 calories] of glucose per day) in patients that are generally overweight, and is expected to work synergistically with weight reduction programs. Experience will most likely lead to better understanding of which patients are likely to respond best to SGLT2 inhibitors, and under what circumstances

    Lichenometric dating (lichenometry) and the biology of the lichen genus rhizocarpon:challenges and future directions

    Get PDF
    Lichenometric dating (lichenometry) involves the use of lichen measurements to estimate the age of exposure of various substrata. Because of low radial growth rates and considerable longevity, species of the crustose lichen genus Rhizocarpon have been the most useful in lichenometry. The primary assumption of lichenometry is that colonization, growth and mortality of Rhizocarpon are similar on surfaces of known and unknown age so that the largest thalli present on the respective faces are of comparable age. This review describes the current state of knowledge regarding the biology of Rhizocarpon and considers two main questions: (1) to what extent does existing knowledge support this assumption; and (2) what further biological observations would be useful both to test its validity and to improve the accuracy of lichenometric dates? A review of the Rhizocarpon literature identified gaps in knowledge regarding early development, the growth rate/size curve, mortality, regeneration, competitive effects, colonization, and succession on rock surfaces. The data suggest that these processes may not be comparable on different rock surfaces, especially in regions where growth rates and thallus turnover are high. In addition, several variables could differ between rock surfaces and influence maximum thallus size, including rate and timing of colonization, radial growth rates, environmental differences, thallus fusion, allelopathy, thallus mortality, colonization and competition. Comparative measurements of these variables on surfaces of known and unknown age may help to determine whether the basic assumptions of lichenometry are valid. Ultimately, it may be possible to take these differences into account when interpreting estimated dates
    corecore