348 research outputs found

    Doing business model innovation for sustainability transitions — bringing in strategic foresight and human centred design

    Get PDF
    This paper brings together socio-technical transitions theory with strategic foresight and human centred design. The aim is to bring in new methods for analysing the business model element of sustainability transitions. We propose a process for doing business model innovation work. Business models have become a key area of focus, particularly in the energy sector. Recent work shows how the development of new business models co-evolves with elements of the energy system, either driving technological innovation, changing user practices or placing pressure on the institutional or policy regime. At the same time, there is no recognised process for business model research aimed at transition management. It is time therefore to propose a more formalised and theoretically grounded approach to business model innovation work. We use this contribution to synthesise the lessons of a four-year research project centred on energy utility business models with industrial, commercial and government stakeholders. We describe the process adopted, and insights this process generated. We seek to establish this process in the literature, invite others to utilise it, adapt it and critique it

    Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes

    Get PDF
    A combinatorial depletion strategy is combined with biochemistry, quantitative proteomics and computational approaches to elucidate the structure of the SAGA/ADA complexes. The analysis reveals five connected functional modules capable of independent assembly

    Attenuation of muscle atrophy in a murine model of cachexia by inhibition of the dsRNA-dependent protein kinase

    Get PDF
    Atrophy of skeletal muscle is due to a depression in protein synthesis and an increase in degradation. Studies in vitro have suggested that activation of the dsRNA-dependent protein kinase (PKR) may be responsible for these changes in protein synthesis and degradation. In order to evaluate whether this is also applicable to cancer cachexia the action of a PKR inhibitor on the development of cachexia has been studied in mice bearing the MAC16 tumour. Treatment of animals with the PKR inhibitor (5 mg kg−1) significantly reduced levels of phospho-PKR in muscle down to that found in non-tumour-bearing mice, and effectively attenuated the depression of body weight, with increased muscle mass, and also inhibited tumour growth. There was an increase in protein synthesis in skeletal muscle, which paralleled a decrease in eukaryotic initiation factor 2α phosphorylation. Protein degradation rates in skeletal muscle were also significantly decreased, as was proteasome activity levels and expression. Myosin levels were increased up to values found in non-tumour-bearing animals. Proteasome expression correlated with a decreased nuclear accumulation of nuclear factor-κB (NF-κB). The PKR inhibitor also significantly inhibited tumour growth, although this appeared to be a separate event from the effect on muscle wasting. These results suggest that inhibition of the autophosphorylation of PKR may represent an appropriate target for the attenuation of muscle atrophy in cancer cachexia

    A phase I study of the nitroimidazole hypoxia marker SR4554 using 19F magnetic resonance spectroscopy

    Get PDF
    SR4554 is a fluorine-containing 2-nitroimidazole, designed as a hypoxia marker detectable with 19F magnetic resonance spectroscopy (MRS). In an initial phase I study of SR4554, nausea/vomiting was found to be dose-limiting, and 1400 mg m−2 was established as MTD. Preliminary MRS studies demonstrated some evidence of 19F retention in tumour. In this study we investigated higher doses of SR4554 and intratumoral localisation of the 19F MRS signal. Patients had tumours 3 cm in diameter and 4 cm deep. Measurements were performed using 1H/19F surface coils and localised 19F MRS acquisition. SR4554 was administered at 1400 mg m−2, with subsequent increase to 2600 mg m−2 using prophylactic metoclopramide. Spectra were obtained immediately post infusion (MRS no. 1), at 16 h (MRS no. 2) and 20 h (MRS no. 3), based on the SR4554 half-life of 3.5 h determined from a previous study. 19Fluorine retention index (%) was defined as (MRS no. 2/MRS no. 1)*100. A total of 26 patients enrolled at: 1400 (n=16), 1800 (n=1), 2200 (n=1) and 2600 mg m−2 (n=8). SR4554 was well tolerated and toxicities were all grade 1; mean plasma elimination half-life was 3.7±0.9 h. SR4554 signal was seen on both unlocalised and localised MRS no. 1 in all patients. Localised 19F signals were detected at MRS no. 2 in 5 out of 9 patients and 4 out of 5 patients at MRS no. 3. The mean retention index in tumour was 13.6 (range 0.6-43.7) compared with 4.1 (range 0.6-7.3) for plasma samples taken at the same times (P=0.001) suggesting 19F retention in tumour and, therefore, the presence of hypoxia. We have demonstrated the feasibility of using 19F MRS with SR4554 as a potential method of detecting hypoxia. Certain patients showed evidence of 19F retention in tumour, supporting further development of this technique for detection of tumour hypoxia

    In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography

    Get PDF
    Development of hypoxia-targeted therapies has stimulated the search for clinically applicable noninvasive markers of tumour hypoxia. Here, we describe the validation of [18F]fluoroetanidazole ([18F]FETA) as a tumour hypoxia marker by positron emission tomography (PET). Cellular transport and retention of [18F]FETA were determined in vitro under air vs nitrogen. Biodistribution and metabolism of the radiotracer were determined in mice bearing MCF-7, RIF-1, EMT6, HT1080/26.6, and HT1080/1-3C xenografts. Dynamic PET imaging was performed on a dedicated small animal scanner. [18F]FETA, with an octanol–water partition coefficient of 0.16±0.01, was selectively retained by RIF-1 cells under hypoxia compared to air (3.4- to 4.3-fold at 60–120 min). The radiotracer was stable in the plasma and distributed well to all the tissues studied. The 60-min tumour/muscle ratios positively correlated with the percentage of pO2 values <5 mmHg (r=0.805, P=0.027) and carbogen breathing decreased [18F]FETA-derived radioactivity levels (P=0.028). In contrast, nitroreductase activity did not influence accumulation. Tumours were sufficiently visualised by PET imaging within 30–60 min. Higher fractional retention of [18F]FETA in HT1080/1-3C vs HT1080/26.6 tumours determined by dynamic PET imaging (P=0.05) reflected higher percentage of pO2 values <1 mmHg (P=0.023), lower vessel density (P=0.026), and higher radiobiological hypoxic fraction (P=0.008) of the HT1080/1-3C tumours. In conclusion, [18F]FETA shows hypoxia-dependent tumour retention and is, thus, a promising PET marker that warrants clinical evaluation

    Pancreatic cancer cells resistance to gemcitabine: the role of MUC4 mucin

    Get PDF
    BACKGROUND: A major obstacle to the successful management of pancreatic cancer is to acquire resistance to the existing chemotherapeutic agents. Resistance to gemcitabine, the standard first-line chemotherapeutic agent for advanced and metastatic pancreatic cancer, is mainly attributed to an altered apoptotic threshold in the pancreatic cancer. The MUC4 transmembrane glycoprotein is aberrantly overexpressed in the pancreatic cancer and recently, has been shown to increase pancreatic tumour cell growth by the inhibition of apoptosis. METHODS: Effect of MUC4 on pancreatic cancer cells resistance to gemcitabine was studied in MUC4-expressing and MUC4-knocked down pancreatic cancer cell lines after treatment with gemcitabine by Annexin-V staining, DNA fragmentation assay, assessment of mitochondrial cytochrome c release, immunoblotting and co-immunoprecipitation techniques. RESULTS: Annexin-V staining and DNA fragmentation experiment demonstrated that MUC4 protects CD18/HPAF pancreatic cancer cells from gemcitabine-induced apoptosis. In concert with these results, MUC4 also attenuated mitochondrial cytochrome c release and the activation of caspase-9. Further, our results showed that MUC4 exerts anti-apoptotic function through HER2/extracellular signal-regulated kinase-dependent phosphorylation and inactivation of the pro-apoptotic protein Bad. CONCLUSION: Our results elucidate the function of MUC4 in imparting resistance to pancreatic cancer cells against gemcitabine through the activation of anti-apoptotic pathways and, thereby, promoting cell survival

    Zonal image analysis of tumour vascular perfusion, hypoxia, and necrosis

    Get PDF
    A number of laboratories are utilising both hypoxia and perfusion markers to spatially quantify tumour oxygenation and vascular distributions, and scientists are increasingly turning to automated image analysis methods to quantify such interrelationships. In these studies, the presence of regions of necrosis in the immunohistochemical sections remains a potentially significant source of error. In the present work, frozen MCa-4 mammary tumour sections were used to obtain a series of corresponding image montages. Total vessels were identified using CD31 staining, perfused vessels by DiOC7 staining, hypoxia by EF5/Cy3 uptake, and necrosis by haematoxylin and eosin staining. Our goal was to utilise image analysis techniques to spatially quantitate hypoxic marker binding as a function of distance from the nearest blood vessel. Several refinements to previous imaging methods are described: (1) hypoxia marker images are quantified in terms of their intensity levels, thus providing an analysis of the gradients in hypoxia with increasing distances from blood vessels, (2) zonal imaging masks are derived, which permit spatial sampling of images at precisely defined distances from blood vessels, as well as the omission of necrotic artifacts, (3) thresholding techniques are applied to omit holes in the tissue sections, and (4) distance mapping is utilised to define vascular spacing

    Phase I pharmacokinetic and pharmacodynamic study of the prenyl transferase inhibitor AZD3409 in patients with advanced cancer

    Get PDF
    AZD3409 is an orally active double prodrug that was developed as a novel dual prenyltransferase inhibitor. The formation of the active metabolite AZD3409 acid is mediated by esterases in plasma and cells. The aim of this phase I study was to determine the maximum tolerated dose, toxicities, pharmacokinetics and pharmacodynamics of AZD3409. AZD3409 was administered orally to patients with advanced solid malignancies using an interpatient dose-escalation scheme starting at 500 mg AZD3409 once daily. Twenty-nine patients were treated at seven dose levels. The MTD of part A was defined as 750 mg b.i.d. in the fasted state. Adverse events were mainly gastrointestinal and the severity was on average mild to moderate and reversible. The dose-limiting toxicities were vomiting, diarrhoea and uncontrolled nausea. Pharmacokinetic studies of the prodrug and the active metabolite indicated dose proportionality. Pharmacodynamic studies showed that farnesyltransferase (FTase) was inhibited at all dose levels. In conclusion, chronic oral dosing with AZD3409 is feasible and results in significant inhibition of FTase activity. Pharmacodynamic studies revealed that the maximal FTase inhibition, estimated at 49±11%, appeared to be reached at AZD3409 acid plasma concentrations at which the occurrence of drug-related toxicity was low. This study supports the rationale to implement biological effect studies in clinical trials with biologically active anticancer drugs to define optimal dosing regimens
    corecore