68 research outputs found

    What is new in uremic toxicity?

    Get PDF
    Uremic syndrome results from a malfunctioning of various organ systems due to the retention of compounds which, under normal conditions, would be excreted into the urine and/or metabolized by the kidneys. If these compounds are biologically active, they are called uremic toxins. One of the more important toxic effects of such compounds is cardio-vascular damage. A convenient classification based on the physico-chemical characteristics affecting the removal of such compounds by dialysis is: (1) small water-soluble compounds; (2) protein-bound compounds; (3) the larger “middle molecules”. Recent developments include the identification of several newly detected compounds linked to toxicity or the identification of as yet unidentified toxic effects of known compounds: the dinucleotide polyphosphates, structural variants of angiotensin II, interleukin-18, p-cresylsulfate and the guanidines. Toxic effects seem to be typically exerted by molecules which are “difficult to remove by dialysis”. Therefore, dialysis strategies have been adapted by applying membranes with larger pore size (high-flux membranes) and/or convection (on-line hemodiafiltration). The results of recent studies suggest that these strategies have better outcomes, thereby clinically corroborating the importance attributed in bench studies to these “difficult to remove” molecules

    Statin Use and the Presence of Microalbuminuria. Results from the ERICABEL Trial: A Non-Interventional Epidemiological Cohort Study

    Get PDF
    BACKGROUND: Microalbuminuria (MAU) is considered as a predictor or marker of cardiovascular and renal events. Statins are widely prescribed to reduce cardiovascular risk and to slow down progression of kidney disease. But statins may also generate tubular MAU. The current observational study evaluated the impact of statin use on the interpretation of MAU as a predictor or marker of cardiovascular or renal disease. METHODOLOGY/PRINCIPAL FINDINGS: We used cross-sectional data of ERICABEL, a cohort with 1,076 hypertensive patients. MAU was defined as albuminuria ≄20 mg/l. A propensity score was created to correct for "bias by indication" to receive a statin. As expected, subjects using statins vs. no statins had more cardiovascular risk factors, pointing to bias by indication. Statin users were more likely to have MAU (OR: 2.01, 95%CI: 1.34-3.01). The association between statin use and MAU remained significant after adjusting for the propensity to receive a statin based on cardiovascular risk factors (OR: 1.82, 95%CI: 1.14-2.91). Next to statin use, only diabetes (OR: 1.92, 95%CI: 1.00-3.66) and smoking (OR: 1.49, 95%CI: 0.99-2.26) were associated with MAU. CONCLUSIONS: Use of statins is independently associated with MAU, even after adjusting for bias by indication to receive a statin. In the hypothesis that this MAU is of tubular origin, statin use can result in incorrect labeling of subjects as having a predictor or marker of cardiovascular or renal risk. In addition, statin use affected the association of established cardiovascular risk factors with MAU, blurring the interpretation of multivariable analyses

    Septic AKI in ICU patients. diagnosis, pathophysiology, and treatment type, dosing, and timing: a comprehensive review of recent and future developments

    Get PDF
    Evidence is accumulating showing that septic acute kidney injury (AKI) is different from non-septic AKI. Specifically, a large body of research points to apoptotic processes underlying septic AKI. Unravelling the complex and intertwined apoptotic and immuno-inflammatory pathways at the cellular level will undoubtedly create new and exciting perspectives for the future development (e.g., caspase inhibition) or refinement (specific vasopressor use) of therapeutic strategies. Shock complicating sepsis may cause more AKI but also will render treatment of this condition in an hemodynamically unstable patient more difficult. Expert opinion, along with the aggregated results of two recent large randomized trials, favors continuous renal replacement therapy (CRRT) as preferential treatment for septic AKI (hemodynamically unstable). It is suggested that this approach might decrease the need for subsequent chronic dialysis. Large-scale introduction of citrate as an anticoagulant most likely will change CRRT management in intensive care units (ICU), because it not only significantly increases filter lifespan but also better preserves filter porosity. A possible role of citrate in reducing mortality and morbidity, mainly in surgical ICU patients, remains to be proven. Also, citrate administration in the predilution mode appears to be safe and exempt of relevant side effects, yet still requires rigorous monitoring. Current consensus exists about using a CRRT dose of 25 ml/kg/h in non-septic AKI. However, because patients should not be undertreated, this implies that doses as high as 30 to 35 ml/kg/h must be prescribed to account for eventual treatment interruptions. Awaiting results from large, ongoing trials, 35 ml/kg/h should remain the standard dose in septic AKI, particularly when shock is present. To date, exact timing of CRRT is not well defined. A widely accepted composite definition of timing is needed before an appropriate study challenging this major issue can be launched
    • 

    corecore