794 research outputs found

    Effect of educational outreach on general practice prescribing of antibiotics and antidepressants: a two-year randomised controlled trial

    Get PDF
    Objective. Prescribing of broad spectrum antibiotics and antidepressants in general practice often does not accord with guidelines. The aim was to determine the effectiveness of educational outreach in improving the prescribing of selected antibiotics and antidepressants, and whether the effect is sustained for two years. Design. Single blind randomized trial. Setting. Twenty-eight general practices in Leicestershire, England. Intervention. Educational outreach visits were undertaken, tailored to barriers to change, 14 practices receiving visits for reducing selected antibiotics and 14 for improving antidepressant prescribing. Main outcome measures. Number of items prescribed per 1000 registered patients for amoxicillin with clavulanic acid (co-amoxiclav) and quinolone antibiotics, and average daily quantities per 1000 patients for lofepramine and fluoxetine antidepressants, measured at the practice level for six-month periods over two years. Results. There was no effect on the prescribing of co-amoxiclav, quinolones, or fluoxetine, but prescribing of lofepramine increased in accordance with the guidelines. The increase persisted throughout two years of follow-up. Conclusion. A simple, group-level educational outreach intervention, designed to take account of identified barriers to change, can have a modest but sustained effect on prescribing levels. However, outreach is not always effective. The context in which change in prescribing practice is being sought, the views of prescribers concerning the value of the drug, or other unrecognised barriers to change may influence the effectiveness of outreach

    Dietary iodine exposure and brain structures and cognition in older people. Exploratory analysis in the Lothian Birth Cohort 1936

    Get PDF
    Background: Iodine deficiency is one of the three key micronutrient deficiencies highlighted as major public health issues by the World Health Organisation. Iodine deficiency is known to cause brain structural alterations likely to affect cognition. However, it is not known whether or how different (lifelong) levels of exposure to dietary iodine influences brain health and cognitive functions. Methods: From 1091 participants initially enrolled in The Lothian Birth Cohort Study 1936, we obtained whole diet data from 882. Three years later, from 866 participants (mean age 72 yrs, SD ±0.8), we obtained cognitive information and ventricular, hippocampal and normal and abnormal tissue volumes from brain structural magnetic resonance imaging scans (n=700). We studied the brain structure and cognitive abilities of iodine-rich food avoiders/low consumers versus those with a high intake in iodine-rich foods (namely dairy and fish). Results: We identified individuals (n=189) with contrasting diets, i) belonging to the lowest quintiles for dairy and fish consumption, ii) milk avoiders, iii) belonging to the middle quintiles for dairy and fish consumption, and iv) belonging to the middle quintiles for dairy and fish consumption. Iodine intake was secured mostly though the diet (n=10 supplement users) and was sufficient for most (75.1%, median 193 μg/day). In individuals from these groups, brain lateral ventricular volume was positively associated with fat, energy and protein intake. The associations between iodine intake and brain ventricular volume and between consumption of fish products (including fish cakes and fish-containing pasties) and white matter hyperintensities (p=0.03) the latest being compounded by sodium, proteins and saturated fats, disappeared after type 1 error correction. Conclusion: In this large Scottish older cohort, the proportion of individuals reporting extreme (low vs. high)/medium iodine consumption is small. In these individuals, low iodine-rich food intake was associated with increased brain volume shrinkage, raising an important hypothesis worth being explored for designing appropriate guidelines

    Stochastic Resonance Modulates Neural Synchronization within and between Cortical Sources

    Get PDF
    Neural synchronization is a mechanism whereby functionally specific brain regions establish transient networks for perception, cognition, and action. Direct addition of weak noise (fast random fluctuations) to various neural systems enhances synchronization through the mechanism of stochastic resonance (SR). Moreover, SR also occurs in human perception, cognition, and action. Perception, cognition, and action are closely correlated with, and may depend upon, synchronized oscillations within specialized brain networks. We tested the hypothesis that SR-mediated neural synchronization occurs within and between functionally relevant brain areas and thus could be responsible for behavioral SR. We measured the 40-Hz transient response of the human auditory cortex to brief pure tones. This response arises when the ongoing, random-phase, 40-Hz activity of a group of tuned neurons in the auditory cortex becomes synchronized in response to the onset of an above-threshold sound at its “preferred” frequency. We presented a stream of near-threshold standard sounds in various levels of added broadband noise and measured subjects' 40-Hz response to the standards in a deviant-detection paradigm using high-density EEG. We used independent component analysis and dipole fitting to locate neural sources of the 40-Hz response in bilateral auditory cortex, left posterior cingulate cortex and left superior frontal gyrus. We found that added noise enhanced the 40-Hz response in all these areas. Moreover, added noise also increased the synchronization between these regions in alpha and gamma frequency bands both during and after the 40-Hz response. Our results demonstrate neural SR in several functionally specific brain regions, including areas not traditionally thought to contribute to the auditory 40-Hz transient response. In addition, we demonstrated SR in the synchronization between these brain regions. Thus, both intra- and inter-regional synchronization of neural activity are facilitated by the addition of moderate amounts of random noise. Because the noise levels in the brain fluctuate with arousal system activity, particularly across sleep-wake cycles, optimal neural noise levels, and thus SR, could be involved in optimizing the formation of task-relevant brain networks at several scales under normal conditions

    Impact of Brain-Derived Neurotrophic Factor Val66Met Polymorphism on Cortical Thickness and Voxel-Based Morphometry in Healthy Chinese Young Adults

    Get PDF
    BACKGROUND: Following voxel-based morphometry (VBM), brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265) has been shown to affect human brain morphology in Caucasians. However, little is known about the specific role of the Met/Met genotype on brain structure. Moreover, the relationship between BDNF Val66Met polymorphism and Chinese brain morphology has not been studied. METHODOLOGY/PRINCIPAL FINDINGS: The present study investigated brain structural differences among three genotypes of BDNF (rs6265) for the first time in healthy young Chinese adults via cortical thickness analysis and VBM. Brain differences in Met carriers using another grouping method (combining Val/Met and Met/Met genotypes into a group of Met carriers as in most previous studies) were also investigated using VBM. Dual-approach analysis revealed less gray matter (GM) in the frontal, temporal, cingulate and insular cortices in the Met/Met group compared with the Val/Val group (corrected, P<0.05). Areas with less GM in the Val/Met group were included in the Met/Met group. VBM differences in Met carriers were only found in the middle cingulate cortex. CONCLUSIONS/SIGNIFICANCE: The current results indicated a unique pattern of brain morphologic differences caused by BDNF (rs6265) in young Chinese adults, in which the Met/Met genotype markedly affected the frontal, temporal, cingulate, and insular regions. The grouping method with Met carriers was not suitable to detect the genetic effect of BDNF Val66Met polymorphism on brain morphology, at least in the Chinese population, because it may hide some specific roles of Met/Met and Val/Met genotypes on brain structure

    Cerebellum Abnormalities in Idiopathic Generalized Epilepsy with Generalized Tonic-Clonic Seizures Revealed by Diffusion Tensor Imaging

    Get PDF
    Although there is increasing evidence suggesting that there may be subtle abnormalities in idiopathic generalized epilepsy (IGE) patients using modern neuroimaging techniques, most of these previous studies focused on the brain grey matter, leaving the underlying white matter abnormalities in IGE largely unknown, which baffles the treatment as well as the understanding of IGE. In this work, we adopted multiple methods from different levels based on diffusion tensor imaging (DTI) to analyze the white matter abnormalities in 14 young male IGE patients with generalized tonic-clonic seizures (GTCS) only, comparing with 29 age-matched male healthy controls. First, we performed a voxel-based analysis (VBA) of the fractional anisotropy (FA) images derived from DTI. Second, we used a tract-based spatial statistics (TBSS) method to explore the alterations within the white matter skeleton of the patients. Third, we adopted region-of-interest (ROI) analyses based on the findings of VBA and TBSS to further confirm abnormal brain regions in the patients. At last, considering the convergent evidences we found by VBA, TBSS and ROI analyses, a subsequent probabilistic fiber tractography study was performed to investigate the abnormal white matter connectivity in the patients. Significantly decreased FA values were consistently observed in the cerebellum of patients, providing fresh evidence and new clues for the important role of cerebellum in IGE with GTCS

    Pituitary-hormone secretion by thyrotropinomas

    Get PDF
    Hormone secretion by somatotropinomas, corticotropinomas and prolactinomas exhibits increased pulse frequency, basal and pulsatile secretion, accompanied by greater disorderliness. Increased concentrations of growth hormone (GH) or prolactin (PRL) are observed in about 30% of thyrotropinomas leading to acromegaly or disturbed sexual functions beyond thyrotropin (TSH)-induced hyperthyroidism. Regulation of non-TSH pituitary hormones in this context is not well understood. We there therefore evaluated TSH, GH and PRL secretion in 6 patients with up-to-date analytical and mathematical tools by 24-h blood sampling at 10-min intervals in a clinical research laboratory. The profiles were analyzed with a new deconvolution method, approximate entropy, cross-approximate entropy, cross-correlation and cosinor regression. TSH burst frequency and basal and pulsatile secretion were increased in patients compared with controls. TSH secretion patterns in patients were more irregular, but the diurnal rhythm was preserved at a higher mean with a 2.5 h phase delay. Although only one patient had clinical acromegaly, GH secretion and IGF-I levels were increased in two other patients and all three had a significant cross-correlation between the GH and TSH. PRL secretion was increased in one patient, but all patients had a significant cross-correlation with TSH and showed decreased PRL regularity. Cross-ApEn synchrony between TSH and GH did not differ between patients and controls, but TSH and PRL synchrony was reduced in patients. We conclude that TSH secretion by thyrotropinomas shares many characteristics of other pituitary hormone-secreting adenomas. In addition, abnormalities in GH and PRL secretion exist ranging from decreased (joint) regularity to overt hypersecretion, although not always clinically obvious, suggesting tumoral transformation of thyrotrope lineage cells
    corecore