37 research outputs found

    Performance of the DNA-citoliq liquid-based cytology system compared with conventional smears

    Get PDF
    To evaluate the performance of a new, manual, simplified liquid-based system, DNA-Citoliq (Digene Brasil), employed under routine conditions as compared to conventional smears collected from six collaborating private laboratories. Methods: A panel of cytopathologists, who served as the gold standard diagnosis, adjudicated discordant opinions. Results: Of 3206 pairs of slides considered valid for comparison, there were 3008 in full agreement (93.8%), 112 (3.5%) with one diagnostic category discrepancies, and 86 (2.7%) discordant cases. Among the 288 borderline+ by either method, DNA-Citoliq detected abnormalities in 243 (84.4%), and conventional smears (CS) detected abnormalities in 178 (61.8%) (McNemar test, P < 0.000), a 36.5% increased detection of borderline+ cases. Conclusions: For mild dyskaryosis, DNA-Citoliq detected 176 cases and CS 125 cases (McNemar test, P < 0.000); and for moderate+severe dyskaryosis 66 versus 32 cases respectively (McNemar test, P < 0.000)

    Alteration of gene expression by alcohol exposure at early neurulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously demonstrated that alcohol exposure at early neurulation induces growth retardation, neural tube abnormalities, and alteration of DNA methylation. To explore the global gene expression changes which may underline these developmental defects, microarray analyses were performed in a whole embryo mouse culture model that allows control over alcohol and embryonic variables.</p> <p>Result</p> <p>Alcohol caused teratogenesis in brain, heart, forelimb, and optic vesicle; a subset of the embryos also showed cranial neural tube defects. In microarray analysis (accession number GSM9545), adopting hypothesis-driven Gene Set Enrichment Analysis (GSEA) informatics and intersection analysis of two independent experiments, we found that there was a collective reduction in expression of neural specification genes (neurogenin, <it>Sox5, Bhlhe22</it>), neural growth factor genes [<it>Igf1, Efemp1</it>, <it>Klf10 </it>(<it>Tieg), and Edil3</it>], and alteration of genes involved in cell growth, apoptosis, histone variants, eye and heart development. There was also a reduction of retinol binding protein 1 (<it>Rbp1</it>), and <it>de novo </it>expression of aldehyde dehydrogenase 1B1 (<it>Aldh1B1</it>). Remarkably, four key hematopoiesis genes (glycophorin A, adducin 2, beta-2 microglobulin, and ceruloplasmin) were absent after alcohol treatment, and histone variant genes were reduced. The down-regulation of the neurospecification and the neurotrophic genes were further confirmed by quantitative RT-PCR. Furthermore, the gene expression profile demonstrated distinct subgroups which corresponded with two distinct alcohol-related neural tube phenotypes: an open (ALC-NTO) and a closed neural tube (ALC-NTC). Further, the epidermal growth factor signaling pathway and histone variants were specifically altered in ALC-NTO, and a greater number of neurotrophic/growth factor genes were down-regulated in the ALC-NTO than in the ALC-NTC embryos.</p> <p>Conclusion</p> <p>This study revealed a set of genes vulnerable to alcohol exposure and genes that were associated with neural tube defects during early neurulation.</p

    Endothelial Neuropilin Disruption in Mice Causes DiGeorge Syndrome-Like Malformations via Mechanisms Distinct to Those Caused by Loss of Tbx1

    Get PDF
    The spectrum of human congenital malformations known as DiGeorge syndrome (DGS) is replicated in mice by mutation of Tbx1. Vegfa has been proposed as a modifier of DGS, based in part on the occurrence of comparable phenotypes in Tbx1 and Vegfa mutant mice. Many additional genes have been shown to cause DGS-like phenotypes in mice when mutated; these generally intersect in some manner with Tbx1, and therefore impact the same developmental processes in which Tbx1 itself is involved. In this study, using Tie2Cre, we show that endothelial-specific mutation of the gene encoding the VEGFA coreceptor neuropilin-1 (Nrp1) also replicates the most prominent terminal phenotypes that typify DGS. However, the developmental etiologies of these defects are fundamentally different from those caused by absence of TBX1. In Tie2Cre/Nrp1 mutants, initial pharyngeal organization is normal but subsequent pharyngeal organ growth is impaired, second heart field differentiation is normal but cardiac outflow tract cushion organization is distorted, neural crest cell migration is normal, and palatal mesenchyme proliferation is impaired with no change in apoptosis. Our results demonstrate that impairment of VEGF-dependent endothelial pathways leads to a spectrum of DiGeorge syndrome-type malformations, through processes that are distinguishable from those controlled by Tbx1

    Nrf2-Mediated Transcriptional Induction of Antioxidant Response in Mouse Embryos Exposed to Ethanol in vivo: Implications for the Prevention of Fetal Alcohol Spectrum Disorders

    Get PDF
    Nuclear factor erythroid 2–related factor 2 (Nrf2) is a transcription factor that is important in protection against oxidative stress. This study was designed to determine the role of Nrf2 signaling in transcriptional activation of detoxifying and antioxidant genes in an in vivo mouse fetal alcohol syndrome model. Maternal ethanol treatment was found to increase both Nrf2 protein levels and Nrf2-ARE binding in mouse embryos. It also resulted in a moderate increase in the mRNA expression of Nrf2 downstream target detoxifying and antioxidant genes as well as an increase in the expression of antioxidant proteins. Pretreatment with the Nrf2 inducer, 3H-1,2 dithiole-3-thione (D3T), significantly increased Nrf2 protein levels and Nrf2-ARE binding, and strongly induced the mRNA expression of Nrf2 downstream target genes. It also increased the expression of antioxidant proteins and the activities of the antioxidant enzymes. Additionally, D3T pretreatment resulted in a significant decrease in ethanol-induced reactive oxygen species generation and apoptosis in mouse embryos. These results demonstrate that Nrf2 signaling is involved in the induction of antioxidant response in ethanol-exposed embryos. In addition, the potency of D3T in inducing antioxidants as well as in diminishing ethanol-induced apoptosis suggests that further exploration of the antiteratogenic effect of this compound will be fruitful. Antioxid. Redox Signal. 11, 2023–2033
    corecore