11 research outputs found

    Diagnostic utility of snail in metaplastic breast carcinoma

    Get PDF
    Metaplastic breast carcinoma (MBC) is a rare subtype of breast cancer characterized by coexistence of carcinomatous and sarcomatous components. Snail is a nuclear transcription factor incriminated in the transition of epithelial to mesenchymal differentiation of breast cancer. Aberrant Snail expression results in lost expression of the cell adhesion molecule E-cadherin, an event associated with changes in epithelial architecture and invasive growth. We aimed to identify the utility of Snail, and of traditional immunohistochemical markers, in accurate MBC classification and to evaluate clinicopathologic characteristics and outcome

    Discovery of structure-based small molecular inhibitor of αB-crystallin against basal-like/triple-negative breast cancer development in vitro and in vivo

    No full text
    alpha B-crystallin (CRYAB) is present at a high frequency in poor prognosis basal-like breast tumours, which are largely absent of oestrogen, progesterone receptors and HER2 known as triple-negative breast cancer (TNBC). CRYAB functions as a molecular chaperone to bind to and correct intracellular misfolded/unfolded proteins such as vascular endothelial growth factor (VEGF), preventing non-specific protein aggregations under the influence of the tumour microenvironment stress and/or anti-cancer treatments including bevacizumab therapy. Directly targeting CRYAB can sensitize tumour cells to chemotherapeutic agents and decrease tumour aggressiveness. However, growing evidence shows that CRYAB is a critical adaptive response element after ischemic heart disease and stroke, implying that directly targeting CRYAB might cause serious unwanted side effects. Here, we used structure-based molecular docking of CRYAB and identified a potent small molecular inhibitor, NCI-41356, which can strongly block the interaction between CRYAB and VEGF(165) without affecting CRYAB levels. The disruption of the interaction between CRYAB and VEGF(165) elicits in vitro anti-tumour cell proliferation and invasive effects through the down-regulation of VEGF signalling in the breast cancer cells. The observed in vitro anti-tumour angiogenesis of endothelial cells might be attributed to the down-regulation of paracrine VEGF signalling in the breast cancer cells after treatment with NCI-41356. Intraperitoneal injection of NCI-41356 greatly inhibits the tumour growth and vasculature development in in vivo human breast cancer xenograft models. Our findings provide 'proof-of-concept' for the development of highly specific structure-based alternative targeted therapy for the prevention and/or treatment of TNBC.OncologySCI(E)[email protected]

    Basal-like and triple-negative breast cancers: A critical review with an emphasis on the implications for pathologists and oncologists

    No full text
    Breast cancer is a heterogeneous disease encompassing a variety of entities with distinct morphological features and clinical behaviors. Although morphology is often associated with the pattern of molecular aberrations in breast cancers, it is also clear that tumors of the same histological type show remarkably different clinical behavior. This is particularly true for basal-like cancer, which is an entity defined using gene expression analysis. The purpose of this article was to review the current state of knowledge of basal-like breast cancers, to discuss the relationship between basal-like and triple-negative breast cancers, and to clarify practical implications of these diagnoses for pathologists and oncologists. © 2011 USCAP, Inc

    A survey of immunohistochemical biomarkers for basal-like breast cancer against a gene expression profile gold standard

    No full text
    corecore