10 research outputs found

    Glial Tumor Necrosis Factor Alpha (TNFα) Generates Metaplastic Inhibition of Spinal Learning

    Get PDF
    Injury-induced overexpression of tumor necrosis factor alpha (TNFα) in the spinal cord can induce chronic neuroinflammation and excitotoxicity that ultimately undermines functional recovery. Here we investigate how TNFα might also act to upset spinal function by modulating spinal plasticity. Using a model of instrumental learning in the injured spinal cord, we have previously shown that peripheral intermittent stimulation can produce a plastic change in spinal plasticity (metaplasticity), resulting in the prolonged inhibition of spinal learning. We hypothesized that spinal metaplasticity may be mediated by TNFα. We found that intermittent stimulation increased protein levels in the spinal cord. Using intrathecal pharmacological manipulations, we showed TNFα to be both necessary and sufficient for the long-term inhibition of a spinal instrumental learning task. These effects were found to be dependent on glial production of TNFα and involved downstream alterations in calcium-permeable AMPA receptors. These findings suggest a crucial role for glial TNFα in undermining spinal learning, and demonstrate the therapeutic potential of inhibiting TNFα activity to rescue and restore adaptive spinal plasticity to the injured spinal cord. TNFα modulation represents a novel therapeutic target for improving rehabilitation after spinal cord injury

    State of the Climate in 2016

    Get PDF

    Bone structural effects of variation in the TNFRSF1B gene encoding the tumor necrosis factor receptor 2.

    No full text
    UNLABELLED: The 1p36 region of the human genome has been identified as containing a QTL for BMD in multiple studies. We analysed the TNFRSF1B gene from this region, which encodes the TNF receptor 2, in two large population-based cohorts. Our results suggest that variation in TNFRSF1B is associated with BMD. INTRODUCTION: The TNFRSF1B gene, encoding the TNF receptor 2, is a strong positional and functional candidate gene for impaired bone structure through the role that TNF has in bone cells. The aims of this study were to evaluate the role of variations in the TNFRSF1B gene on bone structure and osteoporotic fracture risk in postmenopausal women. METHODS: Six SNPs in TNFRSF1B were analysed in a cohort of 1,190 postmenopausal Australian women, three of which were also genotyped in an independent cohort of 811 UK postmenopausal women. Differences in phenotypic means for genotype groups were examined using one-way ANOVA and ANCOVA. RESULTS: Significant associations were seen for IVS1+5580A>G with BMD and QUS parameters in the Australian population (P = 0.008 - 0.034) and with hip BMD parameters in the UK population (P = 0.005 - 0.029). Significant associations were also observed between IVS1+6528G>A and hip BMD parameters in the UK cohort (P = 0.0002 - 0.003). We then combined the data from the two cohorts and observed significant associations between both IVS1+5580A>G and IVS1+6528G>A and hip BMD parameters (P = 0.002 - 0.033). CONCLUSIONS: Genetic variation in TNFRSF1B plays a role in the determination of bone structure in Caucasian postmenopausal women, possibly through effects on osteoblast and osteoclast differentiation

    Comparison of Absolute Thresholds Derived from an Adaptive Forced-Choice Procedure and from Reaction Probabilities and Reaction Times in a Simple Reaction Time Paradigm

    No full text
    An understanding of the auditory system's operation requires knowledge of the mechanisms underlying thresholds. In this work we compare detection thresholds obtained with a three-interval-three-alternative forced-choice paradigm with reaction thresholds extracted from both reaction probabilities (RP) and reaction times (RT) in a simple RT paradigm from the same listeners under otherwise nearly identical experimental conditions. Detection thresholds, RP, and RT to auditory stimuli exhibited substantial variation from session to session. Most of the intersession variation in RP and RT could be accounted for by intersession variation in a listener's absolute sensitivity. The reaction thresholds extracted from RP were very similar, if not identical, to those extracted from RT. On the other hand, reaction thresholds were always higher than detection thresholds. The difference between the two thresholds can be considered as the additional amount of evidence required by each listener to react to a stimulus in an unforced design on top of that necessary for detection in the forced-choice design. This difference is inversely related to the listener's probability of producing false alarms. We found that RT, once corrected for some irreducible minimum RT, reflects the time at which a given stimulus reaches the listener's reaction threshold. This suggests that the relationships between simple RT and loudness (reported in the literature) are probably caused by a tight relationship between temporal summation at threshold and temporal summation of loudness

    State of the climate in 2017

    No full text
    corecore