46 research outputs found

    Functional Stability of Unliganded Envelope Glycoprotein Spikes among Isolates of Human Immunodeficiency Virus Type 1 (HIV-1)

    Get PDF
    The HIV-1 envelope glycoprotein (Env) spike is challenging to study at the molecular level, due in part to its genetic variability, structural heterogeneity and lability. However, the extent of lability in Env function, particularly for primary isolates across clades, has not been explored. Here, we probe stability of function for variant Envs of a range of isolates from chronic and acute infection, and from clades A, B and C, all on a constant virus backbone. Stability is elucidated in terms of the sensitivity of isolate infectivity to destabilizing conditions. A heat-gradient assay was used to determine T90 values, the temperature at which HIV-1 infectivity is decreased by 90% in 1 h, which ranged between ∼40 to 49Β°C (nβ€Š=β€Š34). For select Envs (nβ€Š=β€Š10), the half-lives of infectivity decay at 37Β°C were also determined and these correlated significantly with the T90 (pβ€Š=β€Š0.029), though two β€˜outliers’ were identified. Specificity in functional Env stability was also evident. For example, Env variant HIV-1ADA was found to be labile to heat, 37Β°C decay, and guanidinium hydrochloride but not to urea or extremes of pH, when compared to its thermostable counterpart, HIV-1JR-CSF. Blue native PAGE analyses revealed that Env-dependent viral inactivation preceded complete dissociation of Env trimers. The viral membrane and membrane-proximal external region (MPER) of gp41 were also shown to be important for maintaining trimer stability at physiological temperature. Overall, our results indicate that primary HIV-1 Envs can have diverse sensitivities to functional inactivation in vitro, including at physiological temperature, and suggest that parameters of functional Env stability may be helpful in the study and optimization of native Env mimetics and vaccines

    Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques

    Get PDF
    HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses

    HIV-1 escapes from N332-directed antibody neutralization in an elite neutralizer by envelope glycoprotein elongation and introduction of unusual disulfide bonds

    Full text link

    Arterial Tortuosity

    No full text
    corecore