174 research outputs found

    Effects of regular salt marsh haying on marsh plants, algae, invertebrates and birds at Plum Island Sound, Massachusetts

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Wetlands Ecology and Management 17 (2009): 469-487, doi: 10.1007/s11273-008-9125-3.The haying of salt marshes, a traditional activity since colonial times in New England, still occurs in about 400 ha of marsh in the Plum Island Sound estuary in northeastern Massachusetts. We took advantage of this haying activity to investigate how the periodic large-scale removal of aboveground biomass affects a number of marsh processes. Hayed marshes were no different from adjacent reference marshes in plant species density (species per area) and end-of-year aboveground biomass, but did differ in vegetation composition. Spartina patens was more abundant in hayed marshes than S. alterniflora, and the reverse was true in reference marshes. The differences in relative covers of these plant species were not associated with any differences between hayed and reference marshes in the elevations of the marsh platform. Instead it suggested that S. patens was more tolerant of haying than S. alterniflora. S. patens had higher stem densities in hayed marshes than it did in reference marshes, suggesting that periodic cutting stimulated tillering of this species. Although we predicted that haying would stimulate benthic chlorophyll production by opening up the canopy, we found differences to be inconsistent, possibly due to the relatively rapid regrowth of S. patens and to grazing by invertebrates on the algae. The pulmonate snail, Melampus bidendatus was depleted in its δ13C content in the hayed marsh compared to the reference, suggesting a diet shift to benthic algae in hayed marshes. The stable isotope ratios of a number of other consumer species were not affected by haying activity. Migratory shorebirds cue in to recently hayed marshes and may contribute to short term declines in some invertebrate species, however the number of taxa per unit area of marsh surface invertebrates and their overall abundances were unaffected by haying over the long term. Haying had no impact on nutrient concentrations in creeks just downstream from hayed plots, but the sediments of hayed marshes were lower in total N and P compared to references. In sum, haying appeared to affect plant species composition but had only short-term affects on consumer organisms. This contrasts with many grassland ecosystems, where an intermediate level of disturbance, such as by grazing, increases species diversity and may stimulate productivity. From a management perspective, periodic mowing could be a way to maintain S. patens habitats and the suite of species with which they are associated.This research was supported by the Plum Island Ecosystem Long Term Ecological Research program (OCE-972692 and OCE 0423565) of the National Science Foundation (NSF). J. Horowitz and J. Ludlam were supported by NSF Research Experience for Undergraduate (REU) grants when they were students at Hampshire College and Gordon College respectively

    Selecting Indicator Portfolios for Marine Species and Food Webs: A Puget Sound Case Study

    Get PDF
    Ecosystem-based management (EBM) has emerged as a promising approach for maintaining the benefits humans want and need from the ocean, yet concrete approaches for implementing EBM remain scarce. A key challenge lies in the development of indicators that can provide useful information on ecosystem status and trends, and assess progress towards management goals. In this paper, we describe a generalized framework for the methodical and transparent selection of ecosystem indicators. We apply the framework to the second largest estuary in the United States – Puget Sound, Washington – where one of the most advanced EBM processes is currently underway. Rather than introduce a new method, this paper integrates a variety of familiar approaches into one step-by-step approach that will lead to more consistent and reliable reporting on ecosystem condition. Importantly, we demonstrate how a framework linking indicators to policy goals, as well as a clearly defined indicator evaluation and scoring process, can result in a portfolio of useful and complementary indicators based on the needs of different users (e.g., policy makers and scientists). Although the set of indicators described in this paper is specific to marine species and food webs, we provide a general approach that could be applied to any set of management objectives or ecological system

    Discerning natural and anthropogenic organic matter inputs to salt marsh sediments of Ria Formosa lagoon (South Portugal)

    Get PDF
    Sedimentary organic matter (OM) origin and molecular composition provide useful information to understand carbon cycling in coastal wetlands. Core sediments from threors' Contributionse transects along Ria Formosa lagoon intertidal zone were analysed using analytical pyrolysis (Py-GC/MS) to determine composition, distribution and origin of sedimentary OM. The distribution of alkyl compounds (alkanes, alkanoic acids and alkan-2-ones), polycyclic aromatic hydrocarbons (PAHs), lignin-derived methoxyphenols, linear alkylbenzenes (LABs), steranes and hopanes indicated OM inputs to the intertidal environment from natural-autochthonous and allochthonous-as well as anthropogenic. Several n-alkane geochemical indices used to assess the distribution of main OM sources (terrestrial and marine) in the sediments indicate that algal and aquatic macrophyte derived OM inputs dominated over terrigenous plant sources. The lignin-derived methoxyphenol assemblage, dominated by vinylguaiacol and vinylsyringol derivatives in all sediments, points to large OM contribution from higher plants. The spatial distributions of PAHs (polyaromatic hydrocarbons) showed that most pollution sources were mixed sources including both pyrogenic and petrogenic. Low carbon preference indexes (CPI > 1) for n-alkanes, the presence of UCM (unresolved complex mixture) and the distribution of hopanes (C-29-C-36) and steranes (C-27-C-29) suggested localized petroleum-derived hydrocarbon inputs to the core sediments. Series of LABs were found in most sediment samples also pointing to domestic sewage anthropogenic contributions to the sediment OM.EU Erasmus Mundus Joint Doctorate fellowship (FUECA, University of Cadiz, Spain)EUEuropean Commission [FP7-ENV-2011, 282845, FP7-534 ENV-2012, 308392]MINECO project INTERCARBON [CGL2016-78937-R]info:eu-repo/semantics/publishedVersio

    Phosphorus dynamics in a tropical forest soil restored after strip mining

    Get PDF
    Background and aims We hypothesized that successful early ecosystem and soil development in these P-deficient soil materials will initially depend on effective re-establishment of P storage and cycling through organic matter. This hypothesis was tested in a 26-year chronosequence of seven lightly fertilized, oxidic soil materials restored to eucalypt forest communities after bauxite mining. Methods Total P (Pt) status, Hedley P fractions and partial chemical speciation (NaOH-EDTA extraction and analysed using solution 31P NMR spectroscopy) were determined in the restored soils. Results Concentrations of Pt and most Hedley fractions changed with restoration period, declined with depth and were strongly positively correlated with C and N concentrations. Biological P dominated the Labile and Intermediate P fractions while Long-term P was dominantly inorganic. Organic P concentrations in NaOH-EDTA extracts and their chemical natures were similar in restored and unburned native forest sites. Phosphomonoesters were the dominant class of organic P. Conclusions Surprisingly rapid P accretion and fractional changes occurred over 26 years, largely in the surface soils and closely associated with organic matter status. Alkaline hydrolysis products of phosphodiesters and pyrophosphate indicated the importance of microbial P cycling. The important consequences for long-term ecosystem development and biological diversity require further study

    Concurrent Exposure of Bottlenose Dolphins (Tursiops truncatus) to Multiple Algal Toxins in Sarasota Bay, Florida, USA

    Get PDF
    Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health

    Temporal-Difference Reinforcement Learning with Distributed Representations

    Get PDF
    Temporal-difference (TD) algorithms have been proposed as models of reinforcement learning (RL). We examine two issues of distributed representation in these TD algorithms: distributed representations of belief and distributed discounting factors. Distributed representation of belief allows the believed state of the world to distribute across sets of equivalent states. Distributed exponential discounting factors produce hyperbolic discounting in the behavior of the agent itself. We examine these issues in the context of a TD RL model in which state-belief is distributed over a set of exponentially-discounting “micro-Agents”, each of which has a separate discounting factor (γ). Each µAgent maintains an independent hypothesis about the state of the world, and a separate value-estimate of taking actions within that hypothesized state. The overall agent thus instantiates a flexible representation of an evolving world-state. As with other TD models, the value-error (δ) signal within the model matches dopamine signals recorded from animals in standard conditioning reward-paradigms. The distributed representation of belief provides an explanation for the decrease in dopamine at the conditioned stimulus seen in overtrained animals, for the differences between trace and delay conditioning, and for transient bursts of dopamine seen at movement initiation. Because each µAgent also includes its own exponential discounting factor, the overall agent shows hyperbolic discounting, consistent with behavioral experiments
    corecore