179 research outputs found

    Patterns of genic intolerance of rare copy number variation in 59,898 human exomes.

    Get PDF
    Copy number variation (CNV) affecting protein-coding genes contributes substantially to human diversity and disease. Here we characterized the rates and properties of rare genic CNVs (<0.5% frequency) in exome sequencing data from nearly 60,000 individuals in the Exome Aggregation Consortium (ExAC) database. On average, individuals possessed 0.81 deleted and 1.75 duplicated genes, and most (70%) carried at least one rare genic CNV. For every gene, we empirically estimated an index of relative intolerance to CNVs that demonstrated moderate correlation with measures of genic constraint based on single-nucleotide variation (SNV) and was independently correlated with measures of evolutionary conservation. For individuals with schizophrenia, genes affected by CNVs were more intolerant than in controls. The ExAC CNV data constitute a critical component of an integrated database spanning the spectrum of human genetic variation, aiding in the interpretation of personal genomes as well as population-based disease studies. These data are freely available for download and visualization online

    Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease

    Get PDF
    Background Prostate cancer (PrCa) demonstrates a heterogeneous clinical presentation ranging from largely indolent to lethal. We sought to identify a signature of rare inherited variants that distinguishes between these two extreme phenotypes. Methods We sequenced germline whole exomes from 139 aggressive (metastatic, age of diagnosis < 60) and 141 non-aggressive (low clinical grade, age of diagnosis ≥60) PrCa cases. We conducted rare variant association analyses at gene and gene set levels using SKAT and Bayesian risk index techniques. GO term enrichment analysis was performed for genes with the highest differential burden of rare disruptive variants. Results Protein truncating variants (PTVs) in specific DNA repair genes were significantly overrepresented among patients with the aggressive phenotype, with BRCA2, ATM and NBN the most frequently mutated genes. Differential burden of rare variants was identified between metastatic and non-aggressive cases for several genes implicated in angiogenesis, conferring both deleterious and protective effects. Conclusions Inherited PTVs in several DNA repair genes distinguish aggressive from non-aggressive PrCa cases. Furthermore, inherited variants in genes with roles in angiogenesis may be potential predictors for risk of metastases. If validated in a larger dataset, these findings have potential for future clinical application

    Implications of controlled short-wavelength light exposure for sleep in older adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Environmental and physiological conditions make older adults more likely to lose synchronization to their local time and experience sleep disturbances. A regular, 24-hour light/dark cycle promotes synchronization. It is now well established that the circadian system is maximally sensitive to short-wavelength (blue) light. The purpose of the present study was to measure dose effectiveness (amounts and durations) of short-wavelength (blue) light for stimulating the circadian systems of older adults. We investigated the impact of six corneal irradiances (0.7 to 72 μW/cm<sup>2</sup>) of 470-nm light on nocturnal melatonin production. Nine participants, each over 50 years of age completed a within-subjects study. Each week, participants were exposed to one of the six irradiances of 470-nm light for 90 minutes.</p> <p>Findings</p> <p>A two-factor (6 corneal irradiances × 10 exposure durations), within-subjects analysis of variance (ANOVA) was conducted using the melatonin suppression levels. The ANOVA revealed a significant main effect of corneal irradiance (F<sub>5, 30 </sub>= 9.131, p < 0.0001), a significant main effect of exposure duration (F<sub>9, 54 </sub>= 5.731, p < 0.0001), and a significant interaction between these two variables (F<sub>45,270 </sub>= 1.927, p < 0.001). Post hoc t-tests revealed that corneal irradiances as low as 2 μW/cm<sup>2 </sup>reliably suppressed melatonin after 90-minute exposure whereas 0.7 μW/cm<sup>2 </sup>did not.</p> <p>Conclusions</p> <p>Sleep disorders are common and a serious problem for millions of older adults. The present results showed that comfortable, precise and effective doses of light can be prescribed to older adults to reliably stimulate the circadian system that presumably would promote entrainment and, thus, regular sleep. Field studies on the impact of short-wavelength-light doses on sleep efficiency in older adults should be performed.</p

    Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstruction

    Get PDF
    Linking biological samples found at a crime scene with the actual crime event represents the most important aspect of forensic investigation, together with the identification of the sample donor. While DNA profiling is well established for donor identification, no reliable methods exist for timing forensic samples. Here, we provide for the first time a biochemical approach for determining deposition time of human traces. Using commercial enzyme-linked immunosorbent assays we showed that the characteristic 24-h profiles of two circadian hormones, melatonin (concentration peak at late night) and cortisol (peak in the morning) can be reproduced from small samples of whole blood and saliva. We further demonstrated by analyzing small stains dried and stored up to 4 weeks the in vitro stability of melatonin, whereas for cortisol a statistically significant decay with storage time was observed, although the hormone was still reliably detectable in 4-week-old samples. Finally, we showed that the total protein concentration, also assessed using a commercial assay, can be used for normalization of hormone signals in blood, but less so in saliva. Our data thus demonstrate that estimating normalized concentrations of melatonin and cortisol represents a prospective approach for determining deposition time of biological trace samples, at least from blood, with promising expectations for forensic applications. In the broader context, our study opens up a new field of circadian biomarkers for deposition timing of forensic traces; future studies using other circadian biomarkers may reveal if the time range offered by the two hormones studied here can be specified more exactly

    KoVariome: Korean National Standard Reference Variome database of whole genomes with comprehensive SNV, indel, CNV, and SV analyses

    Get PDF
    High-coverage whole-genome sequencing data of a single ethnicity can provide a useful catalogue of population-specific genetic variations, and provides a critical resource that can be used to more accurately identify pathogenic genetic variants. We report a comprehensive analysis of the Korean population, and present the Korean National Standard Reference Variome (KoVariome). As a part of the Korean Personal Genome Project (KPGP), we constructed the KoVariome database using 5.5 terabases of whole genome sequence data from 50 healthy Korean individuals in order to characterize the benign ethnicity-relevant genetic variation present in the Korean population. In total, KoVariome includes 12.7M single-nucleotide variants (SNVs), 1.7M short insertions and deletions (indels), 4K structural variations (SVs), and 3.6K copy number variations (CNVs). Among them, 2.4M (19%) SNVs and 0.4M (24%) indels were identified as novel. We also discovered selective enrichment of 3.8M SNVs and 0.5M indels in Korean individuals, which were used to filter out 1,271 coding-SNVs not originally removed from the 1,000 Genomes Project when prioritizing disease-causing variants. KoVariome health records were used to identify novel disease-causing variants in the Korean population, demonstrating the value of high-quality ethnic variation databases for the accurate interpretation of individual genomes and the precise characterization of genetic variation

    De Novo and Rare Inherited Copy-Number Variations in the Hemiplegic Form of Cerebral Palsy

    Get PDF
    PurposeHemiplegia is a subtype of cerebral palsy (CP) in which one side of the body is affected. Our earlier study of unselected children with CP demonstrated de novo and clinically relevant rare inherited genomic copy-number variations (CNVs) in 9.6% of participants. Here, we examined the prevalence and types of CNVs specifically in hemiplegic CP.MethodsWe genotyped 97 unrelated probands with hemiplegic CP and their parents. We compared their CNVs to those of 10,851 population controls, in order to identify rare CNVs

    Analysis of protein-coding genetic variation in 60,706 humans

    Get PDF
    Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes

    Next-gen sequencing identifies non-coding variation disrupting miRNA-binding sites in neurological disorders

    Get PDF
    Understanding the genetic factors underlying neurodevelopmental and neuropsychiatric disorders is a major challenge given their prevalence and potential severity for quality of life. While large-scale genomic screens have made major advances in this area, for many disorders the genetic underpinnings are complex and poorly understood. To date the field has focused predominantly on protein coding variation, but given the importance of tightly controlled gene expression for normal brain development and disorder, variation that affects non-coding regulatory regions of the genome is likely to play an important role in these phenotypes. Herein we show the importance of 3 prime untranslated region (3'UTR) non-coding regulatory variants across neurodevelopmental and neuropsychiatric disorders. We devised a pipeline for identifying and functionally validating putatively pathogenic variants from next generation sequencing (NGS) data. We applied this pipeline to a cohort of children with severe specific language impairment (SLI) and identified a functional, SLI-associated variant affecting gene regulation in cells and post-mortem human brain. This variant and the affected gene (ARHGEF39) represent new putative risk factors for SLI. Furthermore, we identified 3'UTR regulatory variants across autism, schizophrenia and bipolar disorder NGS cohorts demonstrating their impact on neurodevelopmental and neuropsychiatric disorders. Our findings show the importance of investigating non-coding regulatory variants when determining risk factors contributing to neurodevelopmental and neuropsychiatric disorders. In the future, integration of such regulatory variation with protein coding changes will be essential for uncovering the genetic causes of complex neurological disorders and the fundamental mechanisms underlying health and disease

    Bright light therapy in pregnant women with major depressive disorder: Study protocol for a randomized, double-blind, controlled clinical trial

    Get PDF
    Background: Depression during pregnancy is a common and high impact disease. Generally, 5-10 % of pregnant women suffer from depression. Children who have been exposed to maternal depression during pregnancy have a higher risk of adverse birth outcomes and more often show cognitive, emotional and behavioural problems. Therefore, early detection and treatment of antepartum depression is necessary. Both psychotherapy and antidepressant medication, first choice treatments in a non-pregnant population, have limitations in treating depression during pregnancy. Therefore, it is urgent and relevant to investigate alternative treatments for antepartum depression. Bright light therapy (BLT) is a promising treatment for pregnant women with depressive disorder, for it combines direct availability, sufficient efficacy, low costs and high safety, taking the safety for the unborn child into account as well. Methods: In this study, 150 pregnant women (12-18 weeks pregnant) with a DSM-V diagnosis of depressive disorder will be randomly allocated in a 1:1 ratio to one of the two treatment arms: treatment with BLT (9.000 lux) or treatment with dim red light therapy (100 lux). Both groups will be treated for 6 weeks at home on a daily basis for 30 min, within 30 min of habitual wake-up time. Follow-up will take place after 6 weeks of therapy, 3 and 10 weeks after end of therapy, at birth and 2, 6 and 18 months postpartum. Primary outcome will be the average change in depressive symptoms between the two groups, as measured by the Structured Interview Guide for the Hamilton Depression Scale - Seasonal Affective Disorder version and the Edinburg Postnatal Depression Scale. Changes in rating scale scores of these questionnaires over time will be analysed using generalized linear mixed models. Secondary outcomes will be the changes in maternal cortisol and melatonin levels, in maternal sleep quality and gestational age, birth weight, infant behaviour, infant cortisol exposure and infant cortisol stress response. Discussion: If BLT reduces depressive symptoms in pregnant women, it will provide a safe, cheap, non-pharmacological and efficacious alternative treatment for psychotherapy and antidepressant medication in treating antepartum depression, without any expected adverse reactions for the unborn child. Trial registration: Netherlands Trial Register NTR5476. Registered 5 November 2015

    Biallelic mutations in the gene encoding eEF1A2 cause seizures and sudden death in F0 mice

    Get PDF
    De novo heterozygous missense mutations in the gene encoding translation elongation factor eEF1A2 have recently been found to give rise to neurodevelopmental disorders. Children with mutations in this gene have developmental delay, epilepsy, intellectual disability and often autism; the most frequently occurring mutation is G70S. It has been known for many years that complete loss of eEF1A2 in mice causes motor neuron degeneration and early death; on the other hand heterozygous null mice are apparently normal. We have used CRISPR/Cas9 gene editing in the mouse to mutate the gene encoding eEF1A2, obtaining a high frequency of biallelic mutations. Whilst many of the resulting founder (F0) mice developed motor neuron degeneration, others displayed phenotypes consistent with a severe neurodevelopmental disorder, including sudden unexplained deaths and audiogenic seizures. The presence of G70S protein was not sufficient to protect mice from neurodegeneration in G70S/− mice, showing that the mutant protein is essentially non-functional
    corecore