22 research outputs found

    Ebola: translational science considerations

    Get PDF
    We are currently in the midst of the most aggressive and fulminating outbreak of Ebola-related disease, commonly referred to as “Ebola”, ever recorded. In less than a year, the Ebola virus (EBOV, Zaire ebolavirus species) has infected over 10,000 people, indiscriminately of gender or age, with a fatality rate of about 50%. Whereas at its onset this Ebola outbreak was limited to three countries in West Africa (Guinea, where it was first reported in late March 2014, Liberia, where it has been most rampant in its capital city, Monrovia and other metropolitan cities, and Sierra Leone), cases were later reported in Nigeria, Mali and Senegal, as well as in Western Europe (i.e., Madrid, Spain) and the US (i.e., Dallas, Texas; New York City) by late October 2014. World and US health agencies declared that the current Ebola virus disease (EVD) outbreak has a strong likelihood of growing exponentially across the world before an effective vaccine, treatment or cure can be developed, tested, validated and distributed widely. In the meantime, the spread of the disease may rapidly evolve from an epidemics to a full-blown pandemic. The scientific and healthcare communities actively research and define an emerging kaleidoscope of knowledge about critical translational research parameters, including the virology of EBOV, the molecular biomarkers of the pathological manifestations of EVD, putative central nervous system involvement in EVD, and the cellular immune surveillance to EBOV, patient-centered anthropological and societal parameters of EVD, as well as translational effectiveness about novel putative patient-targeted vaccine and pharmaceutical interventions, which hold strong promise, if not hope, to curb this and future Ebola outbreaks. This work reviews and discusses the principal known facts about EBOV and EVD, and certain among the most interesting ongoing or future avenues of research in the field, including vaccination programs for the wild animal vectors of the virus and the disease from global translational science perspective

    Biological Rhythmicity in Subterranean Animals: A Function Risking Extinction?

    No full text
    In this chapter, we discuss evidence of regression of circadian locomotor activity in exclusively subterranean species (troglobites), having fishes as models, by comparing such findings with observations on related epigean (surface) species, that may also form self-sustained subterranean (troglophilic) populations. These results favor the hypothesis of regression of a function which may have lost its adaptive value for species permanently isolated in hypogean habitats for many generations—regression similar to the reduction of eyes and dark pigmentation, typical of troglobites in general. Recent data on feeding behavior of blind catfish compared to epigean congeners suggest a process of partial regression, affecting locomotion but not feeding, due perhaps to the persistence of regular food availability in the otherwise continuously dark cave environment. Among non-troglobitic subterranean animals, trogloxenes present regular, cyclical movements between hypogean and epigean habitats, whereas troglophiles may move between these habitats, promoting genetic connectivity between surface and subterranean populations, but without following well-defined rhythmic patterns

    Assessing the feasibility of fly based surveillance of wildlife infectious diseases

    Get PDF
    Monitoring wildlife infectious agents requires acquiring samples suitable for analyses, which is often logistically demanding. A possible alternative to invasive or non-invasive sampling of wild-living vertebrates is the use of vertebrate material contained in invertebrates feeding on them, their feces, or their remains. Carrion flies have been shown to contain vertebrate DNA; here we investigate whether they might also be suitable for wildlife pathogen detection. We collected 498 flies in Taï National Park, Côte d’Ivoire, a tropical rainforest and examined them for adenoviruses (family Adenoviridae), whose DNA is frequently shed in feces of local mammals. Adenoviral DNA was detected in 6/142 mammal-positive flies. Phylogenetic analyses revealed that five of these sequences were closely related to sequences obtained from local non-human primates, while the sixth sequence was closely related to a murine adenovirus. Next-generation sequencing-based DNA-profiling of the meals of the respective flies identified putative hosts that were a good fit to those suggested by adenoviral sequence affinities. We conclude that, while characterizing the genetic diversity of wildlife infectious agents through fly-based monitoring may not be cost-efficient, this method could probably be used to detect the genetic material of wildlife infectious agents causing wildlife mass mortality in pristine areas
    corecore