479 research outputs found

    Axion Protection from Flavor

    Get PDF
    The QCD axion fails to solve the strong CP problem unless all explicit PQ violating, Planck-suppressed, dimension n<10 operators are forbidden or have exponentially small coefficients. We show that all theories with a QCD axion contain an irreducible source of explicit PQ violation which is proportional to the determinant of the Yukawa interaction matrix of colored fermions. Generically, this contribution is of low operator dimension and will drastically destabilize the axion potential, so its suppression is a necessary condition for solving the strong CP problem. We propose a mechanism whereby the PQ symmetry is kept exact up to n=12 with the help of the very same flavor symmetries which generate the hierarchical quark masses and mixings of the SM. This "axion flavor protection" is straightforwardly realized in theories which employ radiative fermion mass generation and grand unification. A universal feature of this construction is that the heavy quark Yukawa couplings are generated at the PQ breaking scale.Comment: 16 pages, 2 figure

    Absolutely stable proton and lowering the gauge unification scale

    Get PDF
    A unified model is constructed, based on flipped SU(5) in which the proton is absolutely stable. The model requires the existence of new leptons with masses of order the weak scale. The possibility that the unification scale could be extremely low is discussed

    Notes on Operator Equations of Supercurrent Multiplets and the Anomaly Puzzle in Supersymmetric Field Theories

    Full text link
    Recently, Komargodski and Seiberg have proposed a new type of supercurrent multiplet which contains the energy-momentum tensor and the supersymmetry current consistently. In this paper we study quantum properties of the supercurrent in renormalizable field theories. We point out that the new supercurrent gives a quite simple resolution to the classic problem, called the anomaly puzzle, that the Adler-Bardeen theorem applied to an R-symmetry current is inconsistent with all order corrections to ÎČ\beta functions. We propose an operator equation for the supercurrent in all orders of perturbation theory, and then perform several consistency checks of the equation. The operator equation we propose is consisitent with the one proposed by Shifman and Vainshtein, if we take some care in interpreting the meaning of non-conserved currents.Comment: 28 pages; v2:clarifications and references added, some minor change

    Effective Theory Approach to the Spontaneous Breakdown of Lorentz Invariance

    Get PDF
    We generalize the coset construction of Callan, Coleman, Wess and Zumino to theories in which the Lorentz group is spontaneously broken down to one of its subgroups. This allows us to write down the most general low-energy effective Lagrangian in which Lorentz invariance is non-linearly realized, and to explore the consequences of broken Lorentz symmetry without having to make any assumptions about the mechanism that triggers the breaking. We carry out the construction both in flat space, in which the Lorentz group is a global spacetime symmetry, and in a generally covariant theory, in which the Lorentz group can be treated as a local internal symmetry. As an illustration of this formalism, we construct the most general effective field theory in which the rotation group remains unbroken, and show that the latter is just the Einstein-aether theory.Comment: 45 pages, no figures

    Lorentz Violation in Extra Dimensions

    Full text link
    In theories with extra dimensions it is well known that the Lorentz invariance of the D=4+nD=4+n-dimensional spacetime is lost due to the compactified nature of the nn dimensions leaving invariance only in 4d. In such theories other sources of Lorentz violation may exist associated with the physics that initiated the compactification process at high scales. Here we consider the possibility of capturing some of this physics by analyzing the higher dimensional analog of the model of Colladay and Kostelecky. In that scenario a complete set of Lorentz violating operators arising from spontaneous Lorentz violation, that are not obviously Planck-scale suppressed, are added to the Standard Model action. Here we consider the influence of the analogous set of operators which break Lorentz invariance in 5d within the Universal Extra Dimensions picture. We show that such operators can greatly alter the anticipated Kaluza-Klein(KK) spectra, induce electroweak symmetry breaking at a scale related to the inverse compactification radius, yield sources of parity violation in, e.g., 4d QED/QCD and result in significant violations of KK-parity conservation produced by fermion Yukawa couplings, thus destabilizing the lightest KK particle. LV in 6d is briefly discussed.Comment: 26 pages, 2 figures; additional references and discussio

    Light Sneutrino Dark Matter at the LHC

    Get PDF
    In supersymmetric (SUSY) models with Dirac neutrino masses, a weak-scale trilinear A-term that is not proportional to the small neutrino Yukawa couplings can induce a sizable mixing between left and right-handed sneutrinos. The lighter sneutrino mass eigenstate can hence become the lightest SUSY particle (LSP) and a viable dark matter candidate. In particular, it can be an excellent candidate for light dark matter with mass below ~10 GeV. Such a light mixed sneutrino LSP has a dramatic effect on SUSY signatures at the LHC, as charginos decay dominantly into the light sneutrino plus a charged lepton, and neutralinos decay invisibly to a neutrino plus a sneutrino. We perform a detailed study of the LHC potential to resolve the light sneutrino dark matter scenario by means of three representative benchmark points with different gluino and squark mass hierarchies. We study in particular the determination of the LSP (sneutrino) mass from cascade decays involving charginos, using the mT2 variable. Moreover, we address measurements of additional invisible sparticles, in our case the lightest neutralino, and the question of discrimination against the MSSM.Comment: 25 pages, 16 figure

    A four-dimensional {\Lambda}CDM-type cosmological model induced from higher dimensions using a kinematical constraint

    Full text link
    A class of cosmological solutions of higher dimensional Einstein field equations with the energy-momentum tensor of a homogeneous, isotropic fluid as the source are considered with an anisotropic metric that includes the direct sum of a 3-dimensional (physical, flat) external space metric and an n-dimensional (compact, flat) internal space metric. A simple kinematical constraint is postulated that correlates the expansion rates of the external and internal spaces in terms of a real parameter {\lambda}. A specific solution for which both the external and internal spaces expand at different rates is given analytically for n=3. Assuming that the internal dimensions were at Planck length scales when the external space starts with a Big Bang (t=0), they expand only 1.49 times and stay at Planck length scales even in the present age of the universe (13.7 Gyr). The effective four dimensional universe would exhibit a behavior consistent with our current understanding of the observed universe. It would start in a stiff fluid dominated phase and evolve through radiation dominated and pressureless matter dominated phases, eventually going into a de Sitter phase at late times.Comment: 12 pages, 8 figures; matches the version published in General Relativity and Gravitatio

    Bigger, Better, Faster, More at the LHC

    Get PDF
    Multijet plus missing energy searches provide universal coverage for theories that have new colored particles that decay into a dark matter candidate and jets. These signals appear at the LHC further out on the missing energy tail than two-to-two scattering indicates. The simplicity of the searches at the LHC contrasts sharply with the Tevatron where more elaborate searches are necessary to separate signal from background. The searches presented in this article effectively distinguish signal from background for any theory where the LSP is a daughter or granddaughter of the pair-produced colored parent particle without ever having to consider missing energies less than 400 GeV.Comment: 26 pages, 8 Figures. Minor textual changes, typos fixed and references adde

    E{7(7)} Symmetry and Finiteness of N=8 Supergravity

    Full text link
    We study N=8 supergravity deformed by the presence of the candidate counterterms. We show that even though they are invariant under undeformed E{7(7)}, all of the candidate counterterms violate the deformed E{7(7)} current conservation. The same conclusion follows from the uniqueness of the Lorentz and SU(8) covariant, E{7(7)} invariant unitarity constraint expressing the 56-dimensional E{7(7)} doublet via 28 independent vectors. Therefore E{7(7)} duality predicts the all-loop UV finiteness of perturbative N=8 supergravity.Comment: 18 page

    Lorentz Violation in Warped Extra Dimensions

    Get PDF
    Higher dimensional theories which address some of the problematic issues of the Standard Model(SM) naturally involve some form of D=4+nD=4+n-dimensional Lorentz invariance violation (LIV). In such models the fundamental physics which leads to, e.g., field localization, orbifolding, the existence of brane terms and the compactification process all can introduce LIV in the higher dimensional theory while still preserving 4-d Lorentz invariance. In this paper, attempting to capture some of this physics, we extend our previous analysis of LIV in 5-d UED-type models to those with 5-d warped extra dimensions. To be specific, we employ the 5-d analog of the SM Extension of Kostelecky et. al. ~which incorporates a complete set of operators arising from spontaneous LIV. We show that while the response of the bulk scalar, fermion and gauge fields to the addition of LIV operators in warped models is qualitatively similar to what happens in the flat 5-d UED case, the gravity sector of these models reacts very differently than in flat space. Specifically, we show that LIV in this warped case leads to a non-zero bulk mass for the 5-d graviton and so the would-be zero mode, which we identify as the usual 4-d graviton, must necessarily become massive. The origin of this mass term is the simultaneous existence of the constant non-zero AdS5AdS_5 curvature and the loss of general co-ordinate invariance via LIV in the 5-d theory. Thus warped 5-d models with LIV in the gravity sector are not phenomenologically viable.Comment: 14 pages, 4 figs; discussion added, algebra repaire
    • 

    corecore