271 research outputs found

    Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis

    Get PDF
    In all organisms, the protein machinery responsible for the replication of DNA, the replisome, is faced with a directionality problem. The antiparallel nature of duplex DNA permits the leading-strand polymerase to advance in a continuous fashion, but forces the lagging-strand polymerase to synthesize in the opposite direction. By extending RNA primers, the lagging-strand polymerase restarts at short intervals and produces Okazaki fragments. At least in prokaryotic systems, this directionality problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. Here we use single-molecule techniques to visualize, in real time, the formation and release of replication loops by individual replisomes of bacteriophage T7 supporting coordinated DNA replication. Analysis of the distributions of loop sizes and lag times between loops reveals that initiation of primer synthesis and the completion of an Okazaki fragment each serve as a trigger for loop release. The presence of two triggers may represent a fail-safe mechanism ensuring the timely reset of the replisome after the synthesis of every Okazaki fragment.

    Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia

    Get PDF
    Pharmacological, genetic and expression studies implicate N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia (SCZ). Similarly, several lines of evidence suggest that autism spectrum disorders (ASD) could be due to an imbalance between excitatory and inhibitory neurotransmission. As part of a project aimed at exploring rare and/or de novo mutations in neurodevelopmental disorders, we have sequenced the seven genes encoding for NMDA receptor subunits (NMDARs) in a large cohort of individuals affected with SCZ or ASD (n=429 and 428, respectively), parents of these subjects and controls (n=568). Here, we identified two de novo mutations in patients with sporadic SCZ in GRIN2A and one de novo mutation in GRIN2B in a patient with ASD. Truncating mutations in GRIN2C, GRIN3A and GRIN3B were identified in both subjects and controls, but no truncating mutations were found in the GRIN1, GRIN2A, GRIN2B and GRIN2D genes, both in patients and controls, suggesting that these subunits are critical for neurodevelopment. The present results support the hypothesis that rare de novo mutations in GRIN2A or GRIN2B can be associated with cases of sporadic SCZ or ASD, just as it has recently been described for the related neurodevelopmental disease intellectual disability. The influence of genetic variants appears different, depending on NMDAR subunits. Functional compensation could occur to counteract the loss of one allele in GRIN2C and GRIN3 family genes, whereas GRIN1, GRIN2A, GRIN2B and GRIN2D appear instrumental to normal brain development and function

    Adhesive capsulitis and dynamic splinting: a controlled, cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adhesive Capsulitis (AC) affects patient of all ages, and stretching protocols are commonly prescribed for this condition. Dynamic splinting has been shown effective in contracture reduction from pathologies including Trismus to plantar fasciitis. The purpose of this study was to examine the efficacy of dynamic splinting on patients with AC.</p> <p>Methods</p> <p>This controlled, cohort study, was conducted at four physical therapy, sports medicine clinics in Texas and California. Sixty-two patients diagnosed with Stage II Adhesive Capsulitis were grouped by intervention. The intervention categories were as follows: Group I (Control); Group II (Physical Therapy exclusively with standardized protocols); Group III; (Shoulder Dynasplint system exclusively); Group IV (Combined treatment with Shoulder Dynasplint and standardized Physical Therapy). The duration of this study was 90 days for all groups, and the main outcome measures were change in active, external rotation.</p> <p>Results</p> <p>Significant difference was found for all treatment groups (p < 0.001) following a one-way ANOVA. The greatest change with the smallest standard deviation was for the combined treatment group IV, (mean change of 29°).</p> <p>Conclusion</p> <p>The difference for the combined treatment group was attributed to patients' receiving the best PT combined with structured "home therapy" that contributed an additional 90 hours of end-range stretching. This adjunct should be included in the standard of care for adhesive Capsulitis.</p> <p>Trial Registration</p> <p><b>Trial Number</b>: NCT00873158</p

    Methods of induction of labour: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rates of labour induction are increasing. We conducted this systematic review to assess the evidence supporting use of each method of labour induction.</p> <p>Methods</p> <p>We listed methods of labour induction then reviewed the evidence supporting each. We searched MEDLINE and the Cochrane Library between 1980 and November 2010 using multiple terms and combinations, including labor, induced/or induction of labor, prostaglandin or prostaglandins, misoprostol, Cytotec, 16,16,-dimethylprostaglandin E2 or E2, dinoprostone; Prepidil, Cervidil, Dinoprost, Carboprost or hemabate; prostin, oxytocin, misoprostol, membrane sweeping or membrane stripping, amniotomy, balloon catheter or Foley catheter, hygroscopic dilators, laminaria, dilapan, saline injection, nipple stimulation, intercourse, acupuncture, castor oil, herbs. We performed a best evidence review of the literature supporting each method. We identified 2048 abstracts and reviewed 283 full text articles. We preferentially included high quality systematic reviews or large randomised trials. Where no such studies existed, we included the best evidence available from smaller randomised or quasi-randomised trials.</p> <p>Results</p> <p>We included 46 full text articles. We assigned a quality rating to each included article and a strength of evidence rating to each body of literature. Prostaglandin E2 (PGE2) and vaginal misoprostol were more effective than oxytocin in bringing about vaginal delivery within 24 hours but were associated with more uterine hyperstimulation. Mechanical methods reduced uterine hyperstimulation compared with PGE2 and misoprostol, but increased maternal and neonatal infectious morbidity compared with other methods. Membrane sweeping reduced post-term gestations. Most included studies were too small to evaluate risk for rare adverse outcomes.</p> <p>Conclusions</p> <p>Research is needed to determine benefits and harms of many induction methods.</p

    Bacterial diversity and community composition from seasurface to subseafloor

    Get PDF
    © The International Society for Microbial Ecology, 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ISME Journal 10 (2016): 979–989, doi:10.1038/ismej.2015.175.We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4–v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450 104 pyrotags representing 29 814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (greater than or equal to1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment.This study was funded by the Biological Oceanography Program of the US National Science Foundation (grant OCE-0752336) and by the NSF-funded Center for Dark Energy Biosphere Investigations (grant NSF-OCE-0939564)

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    DNA primase acts as a molecular brake in DNA replication

    Get PDF
    A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand. This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of an RNA primer, the recycling of the lagging-strand DNA polymerase, and the production of an Okazaki fragment. Primases synthesize RNA primers at a rate that is orders of magnitude lower than the rate of DNA synthesis by the DNA polymerases at the fork. Furthermore, the recycling of the lagging-strand DNA polymerase from a finished Okazaki fragment to a new primer is inherently slower than the rate of nucleotide polymerization. Different models have been put forward to explain how these slow enzymatic steps can take place at the lagging strand without losing coordination with the continuous and fast leading-strand synthesis. Nonetheless, a clear picture remains elusive. Here we use single-molecule techniques to study the kinetics of a multiprotein replication complex from bacteriophage T7 and to characterize the effect of primase activity on fork progression. We observe the synthesis of primers on the lagging strand to cause transient pausing of the highly processive leading-strand synthesis. In the presence of both leading- and lagging-strand synthesis, we observe the formation and release of a replication loop on the lagging strand. Before loop formation, the primase acts as a molecular brake and transiently halts progression of the replication fork. This observation suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during the slow enzymatic steps on the lagging strand
    corecore