36 research outputs found
High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging
Progress in neuroscience constantly relies on the development of new
techniques to investigate the complex dynamics of neuronal networks. An ongoing
challenge is to achieve minimally-invasive and high-resolution observations of
neuronal activity in vivo inside deep brain areas. A perspective strategy is to
utilise holographic control of light propagation in complex media, which allows
converting a hair-thin multimode optical fibre into an ultra-narrow imaging
tool. Compared to current endoscopes based on GRIN lenses or fibre bundles,
this concept offers a footprint reduction exceeding an order of magnitude,
together with a significant enhancement in resolution. We designed a compact
and high-speed system for fluorescent imaging at the tip of a fibre, achieving
micron-scale resolution across a 50 um field of view, and yielding 7-kilopixel
images at a rate of 3.5 frames/s. Furthermore, we demonstrate in vivo
observations of cell bodies and processes of inhibitory neurons within deep
layers of the visual cortex and hippocampus of anesthetised mice. This study
forms the basis for several perspective techniques of modern microscopy to be
delivered deep inside the tissue of living animal models while causing minimal
impact on its structural and functional properties.Comment: 10 pages, 2 figures, Supplementary movie:
https://drive.google.com/file/d/1Fm0G3TAIC49LVX6FaEiAtlefkWx1T2a5/vie
Adult reversal of cognitive phenotypes in neurodevelopmental disorders
Recent findings in mice suggest that it is possible to reverse certain neurodevelopmental disorders in adults. Changes in development, previously thought to be irreparable in adults, were believed to underlie the neurological and psychiatric phenotypes of a range of common mental health problems with a clear developmental component. As a consequence, most researchers have focused their efforts on understanding the molecular and cellular processes that alter development with the hope that early intervention could prevent the emergent pathology. Unexpectedly, several different animal model studies published recently, including animal models of autism, suggest that it may be possible to reverse neurodevelopmental disorders in adults: Addressing the underlying molecular and cellular deficits in adults could in several cases dramatically improve the neurocognitive phenotypes in these animal models. The findings reviewed here provide hope to millions of individuals afflicted with a wide range of neurodevelopmental disorders, including autism, since they suggest that it may be possible to treat or even cure them in adults
Disentangling the heterogeneity of autism spectrum disorder through genetic findings
Autism spectrum disorder (ASD) represents a heterogeneous group of disorders, which presents a substantial challenge to diagnosis and treatment. Over the past decade, considerable progress has been made in the identification of genetic risk factors for ASD that define specific mechanisms and pathways underlying the associated behavioural deficits. In this Review, we discuss how some of the latest advances in the genetics of ASD have facilitated parsing of the phenotypic heterogeneity of this disorder. We argue that only through such advances will we begin to define endophenotypes that can benefit from targeted, hypothesis-driven treatments. We review the latest technologies used to identify and characterize the genetics underlying ASD and then consider three themes—single-gene disorders, the gender bias in ASD, and the genetics of neurological comorbidities—that highlight ways in which we can use genetics to define the many phenotypes within the autism spectrum. We also present current clinical guidelines for genetic testing in ASD and their implications for prognosis and treatment