75 research outputs found

    Arterial pressure changes monitoring with a new precordial noninvasive sensor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, a cutaneous force-frequency relation recording system based on first heart sound amplitude vibrations has been validated. A further application is the assessment of Second Heart Sound (S2) amplitude variations at increasing heart rates. The aim of this study was to assess the relationship between second heart sound amplitude variations at increasing heart rates and hemodynamic changes.</p> <p>Methods</p> <p>The transcutaneous force sensor was positioned in the precordial region in 146 consecutive patients referred for exercise (n = 99), dipyridamole (n = 41), or pacing stress (n = 6). The curve of S2 peak amplitude variation as a function of heart rate was computed as the increment with respect to the resting value.</p> <p>Results</p> <p>A consistent S2 signal was obtained in all patients. Baseline S2 was 7.2 ± 3.3 m<it>g</it>, increasing to 12.7 ± 7.7 m<it>g </it>at peak stress. S2 percentage increase was + 133 ± 104% in the 99 exercise, + 2 ± 22% in the 41 dipyridamole, and + 31 ± 27% in the 6 pacing patients (p < 0.05). Significant determinants of S2 amplitude were blood pressure, heart rate, and cardiac index with best correlation (R = .57) for mean pressure.</p> <p>Conclusion</p> <p>S2 recording quantitatively documents systemic pressure changes.</p

    Comparative genomics of small RNA regulatory pathway components in vector mosquitoes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small RNA regulatory pathways (SRRPs) control key aspects of development and anti-viral defense in metazoans. Members of the Argonaute family of catalytic enzymes degrade target RNAs in each of these pathways. SRRPs include the microRNA, small interfering RNA (siRNA) and PIWI-type gene silencing pathways. Mosquitoes generate viral siRNAs when infected with RNA arboviruses. However, in some mosquitoes, arboviruses survive antiviral RNA interference (RNAi) and are transmitted via mosquito bite to a subsequent host. Increased knowledge of these pathways and functional components should increase understanding of the limitations of anti-viral defense in vector mosquitoes. To do this, we compared the genomic structure of SRRP components across three mosquito species and three major small RNA pathways.</p> <p>Results</p> <p>The <it>Ae. aegypti, An. gambiae </it>and <it>Cx. pipiens </it>genomes encode putative orthologs for all major components of the miRNA, siRNA, and piRNA pathways. <it>Ae. aegypti </it>and <it>Cx. pipiens </it>have undergone expansion of Argonaute and PIWI subfamily genes. Phylogenetic analyses were performed for these protein families. In addition, sequence pattern recognition algorithms MEME, MDScan and Weeder were used to identify upstream regulatory motifs for all SRRP components. Statistical analyses confirmed enrichment of species-specific and pathway-specific cis-elements over the rest of the genome.</p> <p>Conclusion</p> <p>Analysis of Argonaute and PIWI subfamily genes suggests that the small regulatory RNA pathways of the major arbovirus vectors, <it>Ae. aegypti and Cx. pipiens</it>, are evolving faster than those of the malaria vector <it>An. gambiae </it>and <it>D. melanogaster</it>. Further, protein and genomic features suggest functional differences between subclasses of PIWI proteins and provide a basis for future analyses. Common UCR elements among SRRP components indicate that 1) key components from the miRNA, siRNA, and piRNA pathways contain NF-kappaB-related and Broad complex transcription factor binding sites, 2) purifying selection has occurred to maintain common pathway-specific elements across mosquito species and 3) species-specific differences in upstream elements suggest that there may be differences in regulatory control among mosquito species. Implications for arbovirus vector competence in mosquitoes are discussed.</p

    The interaction of Thrombospondins with extracellular matrix proteins

    Get PDF
    The thrombospondins (TSPs) are a family of five matricellular proteins that appear to function as adapter molecules to guide extracellular matrix synthesis and tissue remodeling in a variety of normal and disease settings. Various TSPs have been shown to bind to fibronectin, laminin, matrilins, collagens and other extracellular matrix (ECM) proteins. The importance of TSP-1 in this context is underscored by the fact that it is rapidly deposited at the sites of tissue damage by platelets. An association of TSPs with collagens has been known for over 25 years. The observation that the disruption of the TSP-2 gene in mice leads to collagen fibril abnormalities provided important in vivo evidence that these interactions are physiologically important. Recent biochemical studies have shown that TSP-5 promotes collagen fibril assembly and structural studies suggest that TSPs may interact with collagens through a highly conserved potential metal ion dependent adhesion site (MIDAS). These interactions are critical for normal tissue homeostasis, tumor progression and the etiology of skeletal dysplasias

    Tissue engineering of functional articular cartilage: the current status

    Get PDF
    Osteoarthritis is a degenerative joint disease characterized by pain and disability. It involves all ages and 70% of people aged >65 have some degree of osteoarthritis. Natural cartilage repair is limited because chondrocyte density and metabolism are low and cartilage has no blood supply. The results of joint-preserving treatment protocols such as debridement, mosaicplasty, perichondrium transplantation and autologous chondrocyte implantation vary largely and the average long-term result is unsatisfactory. One reason for limited clinical success is that most treatments require new cartilage to be formed at the site of a defect. However, the mechanical conditions at such sites are unfavorable for repair of the original damaged cartilage. Therefore, it is unlikely that healthy cartilage would form at these locations. The most promising method to circumvent this problem is to engineer mechanically stable cartilage ex vivo and to implant that into the damaged tissue area. This review outlines the issues related to the composition and functionality of tissue-engineered cartilage. In particular, the focus will be on the parameters cell source, signaling molecules, scaffolds and mechanical stimulation. In addition, the current status of tissue engineering of cartilage will be discussed, with the focus on extracellular matrix content, structure and its functionality

    Gravitational Lensing from a Spacetime Perspective

    Full text link

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    In vitro models of cancer stem cells and clinical applications

    Full text link

    Feeding strategies of a small mammal (Phyllotis xanthopygus, Rodentia Cricetidae) at diverse altitudes in the Central Andes, Argentina

    No full text
    Knowledge of feeding habits not only contributes information related to theresources that individuals need to survive and breed, but also leads to insights aboutthe interactions between a species and its environment. The optimal foraging theoryexplains diet selection by several attributes of the trophic scenario such as availability,diversity, quality and predictability of food. Other models propose that digestive tractmass increases under high metabolic demands by cold, affecting food choice andintake. Thus, diet selection emerges as a behavioural trait shaped by intrinsic andextrinsic factors. The goal of our study was to determine variation in the trophicscenario among sites at different elevations, as well as variation in phenotypic traitsrelevant to the nutritional and energy balance in Phyllotis xanthopygus. This smallrodent is widely distributed along the Andes Mountains. We assessed diet selectionand digestive tract size in individuals collected at three elevations across its distributionrange. Results on dietary proportion of specific trophic categories (green parts,fruits and arthropods) showed that P. xanthopygus alternates between omnivory andgranivory/frugivory. Richness, diversity and quality of the available resources evidenceda relatively low-quality trophic scenario at high altitude. Nevertheless, thediets built in by animals from diverse altitudes lacked differentiation in quality ordiversity. P. xanthopygus seems to behaviourally compensate environmental variationto cope with nutritional requirements, by changing diet composition and proportionof items included. The resultant uniform diet quality is consistent with the absence ofvariation in the gastrointestinal tract size. Considering the spatial variability andseasonality of the region, a behavioural response is probably the most convenientstrategy to overcome short-term environmental heterogeneity. In a plastic speciessuch as P. xanthopygus, behaviour is a fundamental aspect to take into account bypredictive models in the forecasts of climate change effects on biological diversity.Fil: Sassi, Paola Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Cuevas, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Menéndez Sammartino, Josefina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dacar, María Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentin
    • 

    corecore