78 research outputs found

    Dimethylthiourea protects against chlorine induced changes in airway function in a murine model of irritant induced asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to chlorine (Cl<sub>2</sub>) causes airway injury, characterized by oxidative damage, an influx of inflammatory cells and airway hyperresponsiveness. We hypothesized that Cl<sub>2</sub>-induced airway injury may be attenuated by antioxidant treatment, even after the initial injury.</p> <p>Methods</p> <p>Balb/C mice were exposed to Cl<sub>2 </sub>gas (100 ppm) for 5 mins, an exposure that was established to alter airway function with minimal histological disruption of the epithelium. Twenty-four hours after exposure to Cl<sub>2</sub>, airway responsiveness to aerosolized methacholine (MCh) was measured. Bronchoalveolar lavage (BAL) was performed to determine inflammatory cell profiles, total protein, and glutathione levels. Dimethylthiourea (DMTU;100 mg/kg) was administered one hour before or one hour following Cl<sub>2 </sub>exposure.</p> <p>Results</p> <p>Mice exposed to Cl<sub>2 </sub>had airway hyperresponsiveness to MCh compared to control animals pre-treated and post-treated with DMTU. Total cell counts in BAL fluid were elevated by Cl<sub>2 </sub>exposure and were not affected by DMTU treatment. However, DMTU-treated mice had lower protein levels in the BAL than the Cl<sub>2</sub>-only treated animals. 4-Hydroxynonenal analysis showed that DMTU given pre- or post-Cl<sub>2 </sub>prevented lipid peroxidation in the lung. Following Cl<sub>2 </sub>exposure glutathione (GSH) was elevated immediately following exposure both in BAL cells and in fluid and this change was prevented by DMTU. GSSG was depleted in Cl<sub>2 </sub>exposed mice at later time points. However, the GSH/GSSG ratio remained high in chlorine exposed mice, an effect attenuated by DMTU.</p> <p>Conclusion</p> <p>Our data show that the anti-oxidant DMTU is effective in attenuating Cl<sub>2 </sub>induced increase in airway responsiveness, inflammation and biomarkers of oxidative stress.</p

    Comparative (Meta)genomic Analysis and Ecological Profiling of Human Gut-Specific Bacteriophage φB124-14

    Get PDF
    Bacteriophage associated with the human gut microbiome are likely to have an important impact on community structure and function, and provide a wealth of biotechnological opportunities. Despite this, knowledge of the ecology and composition of bacteriophage in the gut bacterial community remains poor, with few well characterized gut-associated phage genomes currently available. Here we describe the identification and in-depth (meta)genomic, proteomic, and ecological analysis of a human gut-specific bacteriophage (designated φB124-14). In doing so we illuminate a fraction of the biological dark matter extant in this ecosystem and its surrounding eco-genomic landscape, identifying a novel and uncharted bacteriophage gene-space in this community. φB124-14 infects only a subset of closely related gut-associated Bacteroides fragilis strains, and the circular genome encodes functions previously found to be rare in viral genomes and human gut viral metagenome sequences, including those which potentially confer advantages upon phage and/or host bacteria. Comparative genomic analyses revealed φB124-14 is most closely related to φB40-8, the only other publically available Bacteroides sp. phage genome, whilst comparative metagenomic analysis of both phage failed to identify any homologous sequences in 136 non-human gut metagenomic datasets searched, supporting the human gut-specific nature of this phage. Moreover, a potential geographic variation in the carriage of these and related phage was revealed by analysis of their distribution and prevalence within 151 human gut microbiomes and viromes from Europe, America and Japan. Finally, ecological profiling of φB124-14 and φB40-8, using both gene-centric alignment-driven phylogenetic analyses, as well as alignment-free gene-independent approaches was undertaken. This not only verified the human gut-specific nature of both phage, but also indicated that these phage populate a distinct and unexplored ecological landscape within the human gut microbiome
    corecore