1,891 research outputs found
Early rehabilitation in critical care (eRiCC): functional electrical stimulation with cycling protocol for a randomised controlled trial
INTRODUCTION: Intensive care-acquired weakness is a common problem, leads to significant impairment in physical functioning and muscle strength, and is prevalent in individuals with sepsis. Early rehabilitation has been shown to be safe and feasible; however, commencement is often delayed due to a patient's inability to co-operate. An intervention that begins early in an intensive care unit (ICU) admission without the need for patient volition may be beneficial in attenuating muscle wasting. The eRiCC (early rehabilitation in critical care) trial will investigate the effectiveness of functional electrical stimulation-assisted cycling and cycling alone, compared to standard care, in individuals with sepsis. METHODS AND ANALYSIS: This is a single centre randomised controlled trial. Participants (n=80) aged ≥18 years, with a diagnosis of sepsis or severe sepsis, who are expected to be mechanically ventilated for ≥48 h and remain in the intensive care ≥4 days will be randomised within 72 h of admission to (1) standard care or (2) intervention where participants will receive functional electrical muscle stimulation-assisted supine cycling on one leg while the other leg undergoes cycling alone. Primary outcome measures include: muscle mass (quadriceps ultrasonography; bioelectrical impedance spectroscopy); muscle strength (Medical Research Council Scale; hand-held dynamometry) and physical function (Physical Function in Intensive Care Test; Functional Status Score in intensive care; 6 min walk test). Blinded outcome assessors will assess measures at baseline, weekly, at ICU discharge and acute hospital discharge. Secondary measures will be evaluated in a nested subgroup (n=20) and will consist of biochemical/histological analyses of collected muscle, urine and blood samples at baseline and at ICU discharge. ETHICS AND DISSEMINATION: Ethics approval has been obtained from the relevant institution, and results will be published to inform clinical practice in the care of patients with sepsis to optimise rehabilitation and physical function outcomes. TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Registry ACTRN12612000528853
Thermotomaculum hydrothermale gen. nov., sp. nov., a novel heterotrophic thermophile within the phylum Acidobacteria from a deep-sea hydrothermal vent chimney in the Southern Okinawa Trough
http://www.godac.jamstec.go.jp/darwin/cruise/natsushima/nt08-13/
Modeling Bacterial DNA: Simulation of Self-avoiding Supercoiled Worm-Like Chains Including Structural Transitions of the Helix
Under supercoiling constraints, naked DNA, such as a large part of bacterial
DNA, folds into braided structures called plectonemes. The double-helix can
also undergo local structural transitions, leading to the formation of
denaturation bubbles and other alternative structures. Various polymer models
have been developed to capture these properties, with Monte-Carlo (MC)
approaches dedicated to the inference of thermodynamic properties. In this
chapter, we explain how to perform such Monte-Carlo simulations, following two
objectives. On one hand, we present the self-avoiding supercoiled Worm-Like
Chain (ssWLC) model, which is known to capture the folding properties of
supercoiled DNA, and provide a detailed explanation of a standard MC simulation
method. On the other hand, we explain how to extend this ssWLC model to include
structural transitions of the helix.Comment: Book chapter to appear in The Bacterial Nucleoid, Methods and
Protocols, Springer serie
The SAMI Galaxy Survey: Decomposed stellar kinematics of galaxy bulges and disks
We investigate the stellar kinematics of the bulge and disk components in 826 galaxies with a wide range of morphology from the Sydney-AAO Multi-object Integral-field spectroscopy Galaxy Survey. The spatially resolved rotation velocity (V) and velocity dispersion (σ ) of bulge and disk components have been simultaneously estimated using the penalized pixel fitting (PPXF) method with photometrically defined weights for the two components. We introduce a new subroutine of PPXF for dealing with degeneracy in the solutions. We show that the V and σ distributions in each galaxy can be reconstructed using the kinematics and weights of the bulge and disk components. The combination of two distinct components provides a consistent description of the major kinematic features of galaxies over a wide range of morphological types. We present Tully-Fisher and Faber-Jackson relations showing that the galaxy stellar mass scales with both V and σ for both components of all galaxy types. We find a tight Faber-Jackson relation even for the disk component. We show that the bulge and disk components are kinematically distinct: (1) the two components show scaling relations with similar slopes, but different intercepts; (2) the spin parameter λR indicates bulges are pressure-dominated systems and disks are supported by rotation; and (3) the bulge and disk components have, respectively, low and high values in intrinsic ellipticity. Our findings suggest that the relative contributions of the two components explain, at least to first order, the complex kinematic behaviour of galaxies
Maternal psychological distress in primary care and association with child behavioural outcomes at age three
Observational studies indicate children whose mothers have poor mental health are at increased risk of socio-emotional behavioural difficulties, but it is unknown whether these outcomes vary by the mothers’ mental health recognition and treatment status. To examine this question, we analysed linked longitudinal primary care and research data from 1078 women enrolled in the Born in Bradford cohort. A latent class analysis of treatment status and self-reported distress broadly categorised women as (a) not having a common mental disorder (CMD) that persisted through pregnancy and the first 2 years after delivery (N = 756, 70.1 %), (b) treated for CMD (N = 67, 6.2 %), or (c) untreated (N = 255, 23.7 %). Compared to children of mothers without CMD, 3-year-old children with mothers classified as having untreated CMD had higher standardised factor scores on the Strengths and Difficulties Questionnaire (d = 0.32), as did children with mothers classified as having treated CMD (d = 0.27). Results were only slightly attenuated in adjusted analyses. Children of mothers with CMD may be at risk for socio-emotional and behavioural difficulties. The development of effective treatments for CMD needs to be balanced by greater attempts to identify and treat women. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00787-015-0777-2) contains supplementary material, which is available to authorized users
The SAMI galaxy survey: Rules of behaviour for spin-ellipticity radial tracks in galaxies
We study the behaviour of the spin-ellipticity radial tracks for 507 galaxies from the Sydney AAO Multiobject Integral Field (SAMI) Galaxy Survey with stellar kinematics out to ≥1.5Re. We advocate for a morpho-dynamical classification of galaxies, relying on spatially resolved photometric and kinematic data. We find the use of spin-ellipticity radial tracks is valuable in identifying substructures within a galaxy, including embedded and counter-rotating discs, that are easily missed in unilateral studies of the photometry alone. Conversely, bars are rarely apparent in the stellar kinematics but are readily identified on images. Consequently, we distinguish the spin-ellipticity radial tracks of seven morpho-dynamical types: elliptical, lenticular, early spiral, late spiral, barred spiral, embedded disc, and 2σ galaxies. The importance of probing beyond the inner radii of galaxies is highlighted by the characteristics of galactic features in the spin-ellipticity radial tracks present at larger radii. The density of information presented through spin-ellipticity radial tracks emphasizes a clear advantage to representing galaxies as a track, rather than a single point, in spin-ellipticity parameter space
A fresh look at the evolution and diversification of photochemical reaction centers
In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers
Mechanisms of Psychological Distress following War in the Former Yugoslavia: The Role of Interpersonal Sensitivity
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This study was funded by a grant from the European Commission, contract number INCO-CT-2004-509176. AN was supported by a Clinical Early Career Research Fellowship (113295) and a Project Grant (104288
Predation by Bears Drives Senescence in Natural Populations of Salmon
Classic evolutionary theory predicts that populations experiencing higher rates of environmentally caused (“extrinsic”) mortality should senesce more rapidly, but this theory usually neglects plausible relationships between an individual's senescent condition and its susceptibility to extrinsic mortality. We tested for the evolutionary importance of this condition dependence by comparing senescence rates among natural populations of sockeye salmon (Oncorhynchus nerka) subject to varying degrees of predation by brown bears (Ursus arctos). We related senescence rates in six populations to (1) the overall rate of extrinsic mortality, and (2) the degree of condition dependence in this mortality. Senescence rates were determined by modeling the mortality of individually-tagged breeding salmon at each site. The overall rate of extrinsic mortality was estimated as the long-term average of the annual percentage of salmon killed by bears. The degree of condition dependence was estimated as the extent to which bears killed salmon that exhibited varying degrees of senescence. We found that the degree of condition dependence in extrinsic mortality was very important in driving senescence: populations where bears selectively killed fish showing advanced senescence were those that senesced least rapidly. The overall rate of extrinsic mortality also contributed to among-population variation in senescence-but to a lesser extent. Condition-dependent susceptibility to extrinsic mortality should be incorporated more often into theoretical models and should be explicitly tested in natural populations
- …