32 research outputs found

    Oncogene Activation Induces Metabolic Transformation Resulting in Insulin-Independence in Human Breast Cancer Cells

    Get PDF
    Normal breast epithelial cells require insulin and EGF for growth in serum-free media. We previously demonstrated that over expression of breast cancer oncogenes transforms MCF10A cells to an insulin-independent phenotype. Additionally, most breast cancer cell lines are insulin-independent for growth. In this study, we investigated the mechanism by which oncogene over expression transforms MCF10A cells to an insulin-independent phenotype. Analysis of the effects of various concentrations of insulin and/or IGF-I on proliferation of MCF10A cells demonstrated that some of the effects of insulin were independent from those of IGF-I, suggesting that oncogene over expression drives a true insulin-independent proliferative phenotype. To test this hypothesis, we examined metabolic functions of insulin signaling in insulin-dependent and insulin-independent cells. HER2 over expression in MCF10A cells resulted in glucose uptake in the absence of insulin at a rate equal to insulin-induced glucose uptake in non-transduced cells. We found that a diverse set of oncogenes induced the same result. To gain insight into how HER2 oncogene signaling affected increased insulin-independent glucose uptake we compared HER2-regulated gene expression signatures in MCF10A and HER2 over expressing MCF10A cells by differential analysis of time series gene expression data from cells treated with a HER2 inhibitor. This analysis identified genes specifically regulated by the HER2 oncogene, including VAMP8 and PHGDH, which have known functions in glucose uptake and processing of glycolytic intermediates, respectively. Moreover, these genes specifically implicated in HER2 oncogene-driven transformation are commonly altered in human breast cancer cells. These results highlight the diversity of oncogene effects on cell regulatory pathways and the importance of oncogene-driven metabolic transformation in breast cancer

    Sex Determination in the Squalius alburnoides Complex: An Initial Characterization of Sex Cascade Elements in the Context of a Hybrid Polyploid Genome

    Get PDF
    BACKGROUND:Sex determination processes vary widely among different vertebrate taxa, but no group offers as much diversity for the study of the evolution of sex determination as teleost fish. However, the knowledge about sex determination gene cascades is scarce in this species-rich group and further difficulties arise when considering hybrid fish taxa, in which mechanisms exhibited by parental species are often disrupted. Even though hybridisation is frequent among teleosts, gene based approaches on sex determination have seldom been conducted in hybrid fish. The hybrid polyploid complex of Squalius alburnoides was used as a model to address this question. METHODOLOGY/PRINCIPAL FINDINGS:We have initiated the isolation and characterization of regulatory elements (dmrt1, wt1, dax1 and figla) potentially involved in sex determination in S. alburnoides and in the parental species S. pyrenaicus and analysed their expression patterns by in situ hybridisation. In adults, an overall conservation in the cellular localization of the gene transcripts was observed between the hybrids and parental species. Some novel features emerged, such as dmrt1 expression in adult ovaries, and the non-dimorphic expression of figla, an ovarian marker in other species, in gonads of both sexes in S. alburnoides and S. pyrenaicus. The potential contribution of each gene to the sex determination process was assessed based on the timing and location of expression. Dmrt1 and wt1 transcripts were found at early stages of male development in S. alburnoides and are most likely implicated in the process of gonad development. CONCLUSIONS/SIGNIFICANCE:For the first time in the study of this hybrid complex, it was possible to directly compare the gene expression patterns between the bisexual parental species and the various hybrid forms, for an extended set of genes. The contribution of these genes to gonad integrity maintenance and functionality is apparently unaltered in the hybrids, suggesting that no abrupt shifts in gene expression occurred as a result of hybridisation

    The Glycosyltransferase Repertoire of the Spikemoss Selaginella moellendorffii and a Comparative Study of Its Cell Wall

    Get PDF
    Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffii, was recently selected for full genome sequencing by the Joint Genome Institute (JGI). Glycosyltransferases (GTs) are involved in many aspects of a plant life, including cell wall biosynthesis, protein glycosylation, primary and secondary metabolism. Here, we present a comparative study of the S. moellendorffii genome across 92 GT families and an additional family (DUF266) likely to include GTs. The study encompasses the moss Physcomitrella patens, a non-vascular land plant, while rice and Arabidopsis represent commelinid and non-commelinid seed plants. Analysis of the subset of GT-families particularly relevant to cell wall polysaccharide biosynthesis was complemented by a detailed analysis of S. moellendorffii cell walls. The S. moellendorffii cell wall contains many of the same components as seed plant cell walls, but appears to differ somewhat in its detailed architecture. The S. moellendorffii genome encodes fewer GTs (287 GTs including DUF266s) than the reference genomes. In a few families, notably GT51 and GT78, S. moellendorffii GTs have no higher plant orthologs, but in most families S. moellendorffii GTs have clear orthologies with Arabidopsis and rice. A gene naming convention of GTs is proposed which takes orthologies and GT-family membership into account. The evolutionary significance of apparently modern and ancient traits in S. moellendorffii is discussed, as is its use as a reference organism for functional annotation of GTs

    Mapping the use of simulation in prehospital care – a literature review

    Full text link
    corecore