1,302 research outputs found

    Octave-tunable miniature RF resonators

    Get PDF
    The development and testing of a miniaturized, high-Q, broadly tunable resonator is described. An exemplary device, with a center frequency that is continuously tunable from 1.2 to 2.6 GHz, was tested in detail. Experimental results demonstrated a resonator Q of up to 380, and typical insertion loss of -1.9 dB for a 25 MHz 3-dB bandwidth. These resonators have been used to stabilize a broadly-tunable oscillator with phase noise of -132 dBc/Hz at 100-kHz offset, with a center frequency tunable from 1.2-2.6 GHz, and a tuning speed of 1 GHz/ms

    Coastal zone landscape classification using remote sensing and model development

    Get PDF
    Coastal zone landscape characterization and empirical model development were evaluated using multi-spectral airborne imagery. Collectively, four projects are described that address monitoring and classification issues common to the resource management community. Chapter 1 discusses opportunities for remote sensing. Chapter 2 examines spectral and spatial image resolution requirements, as well as training sample selection methods required for accurate landscape classification. Classification accuracy derived from 25nm imagery with 4m pixel sizes outperformed 70nm imagery with 1m pixel sizes. Eight natural and five cultural landscape features were tested for classification accuracy. Chapter 3 investigated the ability to characterize 1m multispectral imagery into rank-ordered categorical biomass index classes of Phragmites australis. Statistical clustering and sample membership was based upon normalized field-measurements. The red imagery channel showed highly significant correlation with field measurements (p = 0.00) and explained much of its variability (r2 = 0.79). Addition of near-infra red, green, and blue image channels in a forward stepwise regression improved the coefficient of determination (r2 = 0.98). In Chapter 4, a landscape cover map was revised by incorporating expert knowledge into a simple spatial model. Examples are provided for a barrier island environment to illustrate this post-classification methodology. A prototype selection of expert rules was sufficient to change more than 20 per cent of the originally classified landscape pixels. Chapter 5 discusses the development of an empirical model that uses vegetation community classes to estimate: (a) soil type, (b) soil compaction rate, and (c) elevation. Vegetation class proved itself a reliable surrogate for estimating these variables based upon field-based statistical measures of association and significance tests. Vegetation was highly associated with four soil types (Cramer\u27s V = 0.98) and soil compaction rates values at depths of 30 and 46cm (Cramer\u27s V \u3e 0.85), and was able to accurately estimate three decimeter-level elevation zones (r2 = 0.86, p = 0.00). A preliminary model to estimate transverse dune crest heights and locations under forest canopy was presented. Lastly, Chapter 6 offers a summary and concluding statements advocating continued use of remote sensing as an application tool for resource management needs

    Use Explicit Instruction

    Get PDF
    Highly effective instruction for struggling learners requires both excellent instructional materials and excellent interactive teaching that delivers instruction clearly and responds to students’ unique needs and strengths. Explicit Instruction is an evidence-based approach to both designing materials and delivering instruction that is effective for a wide range of learners. It has been shown to be effective for teaching many types of academic content (e.g., reading, writing, mathematics, science) and with students ranging from kindergarten to high school. It is comprised of 16 inter-related elements (see Table 1) that contribute to the effectiveness of the overall system (Archer et al., 2011). Explicit Instruction is designed to systematically prepare students to learn complex skills, present information clearly and unambiguously, support students to engage in new skills while receiving feedback, reduce support as students gain skills, and provide sufficient practice so that students are able to independently apply their new skills in a wide variety of situations

    Nd:LNA Laser Optical Pumping Of ⁴He: Application To Space Magnetometers

    Get PDF
    We have observed Hanle signals and n=0, p=1 parametric resonances of 23S1 metastable helium atoms in a discharge cell by optically pumping the helium atoms with a tunable Nd:LNA laser. These resonances were used to construct a sensitive magnetometer for the measurement of very small magnetic fields. Since magnetometer sensitivity is proportional to the slope of the parametric resonance signal (signal amplitude divided by linewidth), the slopes for single-line laser pumping were compared with similar quantities obtained from conventional helium lamp pumping. Laser pumping yielded 45 times greater slopes with comparable power requirements, thus establishing the potential for developing ultrasensitive resonance magnetometers using single-line laser pumping

    Observations of Anomalous Cosmic Rays at 1 AU

    Get PDF
    Anomalous cosmic rays (ACRs) provide a sensitive probe of the access of energetic particles to the inner heliosphere, varying in intensity by more than two orders of magnitude during the course of the solar cycle. New data which are becoming available from the Advanced Composition Explorer (ACE) can provide a detailed record of ACR intensity and spectral changes on short (~ 1 day) time scales during the approach to solar maximum, which will help address issues of ACR modulation and transport. The elemental and isotopic composition of ACRs provides important information on the source or sources of these particles, while their ionic charge state composition and its energy dependence serves as a diagnostic of their acceleration time scale. We review measurements of the ACR elemental, isotopic, and charge state composition and spectra as determined at 1 AU by SAMPEX, ACE, Wind, and other spacecraft. These results are important input to models of the acceleration, modulation, and transport of ACRs

    The Solar Energetic Particle Event of 6 May 1998

    Get PDF
    The abundances of elements from helium to iron have been measured in more than a dozen moderate to large solar energetic particle (SEP) events using the Solar Isotope Spectrometer (SIS) on-board the Advanced Composition Explorer (ACE). Time variations within some of these events and from event to event have been reported previously. This paper presents an analysis of the event of 6 May 1998, for which relatively time-independent abundance ratios are found. This event has been considered to be an example of an impulsive event, a gradual event, and as a hybrid of the two. Difficulties with classifying this event are discussed

    Solar Coronal Abundances of Rare Elements Based on Solar Energetic Particles

    Get PDF
    Although solar energetic particle (SEP) abundances vary from event to event, it has been shown that by accounting for these variations it is possible to use SEP data to obtain reliable estimates of elemental abundances for the solar corona. We analyze ~20 to 65 MeV/nucleon measurements from the Solar Isotope Spectrometer on ACE in large SEP events observed from November 1997 to January 2001 to obtain new values of the average SEP composition of rare species, P, Cl, K, Ti, Mn, Cr, Co, Cu, and Zn, which have had limited statistical accuracy in SEPs in the past. The measured SEP abundances are compared with other sources of solar-system composition data

    Measurements of Heavy Elements in ^3He-rich SEP Events

    Get PDF
    Using the Solar Isotope Spectrometer (SIS) on the Advanced Composition Explorer (ACE), we have studied the properties of a selection of small ^3He-rich solar energetic particle (SEP) events with heavy ion enhancements in the energy range ~11–22 MeV/nucleon. These events contain significantly increased ^3He/^4He ratios over the solar wind value of 0.0004 in the energy range ~4.5–5.5 MeV/nucleon. In order to characterize the events, the following features have been investigated. First, the heavy element content has been measured and compared to that found in past studies of impulsive SEP events. Next, the simultaneous 38–53 keV electron flux, measured with the Electron, Proton, and Alpha Monitor (EPAM) on ACE, has been examined for possible activity near the ^3He-rich event onset times. Finally a list of measured solar X-ray flares, with corresponding H-alpha flares where possible, has been scrutinized for potential correlations with these events. The results show an apparent correlation between event onset and increased electron flux, and a possible association with X-ray flares

    Variable fractionation of solar energetic particles according to first ionization potential

    Get PDF
    The average composition of solar energetic particles (SEPs), like the solar corona, is known to be depleted in elements with first ionization potential (FIP) more than ~10 eV by a factor of approximately four. We examine evidence for event to event variations in the FIP-related fractionation of SEPs, following up a 1994 study by Garrard and Stone. In a survey of 46 SEP events from 1974 to 1999 the deduced FIP-fractionation varies by a factor of ~2 from event to event, with no apparent relation to charge-to-mass dependent fractionation patterns in these same events. These results are compared to similar variations observed in the solar wind
    corecore