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ABSTRACT

Coastal zone landscape characterization was explained using remote sensing 
technology and empirical model development. Collectively, six chapters address common 
issues and concerns faced by resource managers with the monitoring and characterization o f 
landscape conditions within a coastal zone. The opening chapter is a discussion o f emergent 
opportunities for remote sensing as a significant contributing technology to the resource 
management community. Chapter 2 examines a variety o f imagery resolution requirements 
and training sample selection methods for accurate landscape classification. Imagery with 
25nm spectral bandwidths and a 4m square spatial pixel outperformed three other competing 
combinations o f spectral and spatial resolution. These were evaluated by comparing the 
accuracy o f image classification with field-based truth data. Thirteen natural and cultural 
landscape features were classified. Chapter 3 investigated the capability o f high-resolution 
multi-spectral imagery to characterize Phragmites australis stands into high, medium and 
low biomass classes. Ten P. australis sample sites were grouped into these three classes 
based on image reflectance values and field-based biomass measurements. Similarity of 
group members showed that reflectance values distinguished rank ordered differences in 
biomass between various P. australis stands. In Chapter 4, correction o f an imagery-derived 
cover map was accomplished by assignment of expert knowledge, integration of that 
knowledge into a simple spatial model, and subsequent generation o f a revised cover map. 
Step-by-step examples are provided to illustrate this post-classification modeling 
methodology. A partial prototype selection of expert rules was sufficient to change more 
than 20 per cent o f the originally classified landscape pixels entirely by post-classification. 
Chapter 5 discusses the development o f an empirical model that used vegetation community 
classes to predict the characteristics: a) soil type, b) soil compaction rate, and c) elevation. 
Vegetation class distribution proved to be a reliable surrogate for estimating these variables 
based on field-based statistical scores o f association and significance tests. High marsh 
vegetation grouped together is a statistically significant, reliable predictor o f soil compaction 
rates at depths o f 30 and 46cm (12 and 18in), with reliability decreasing at shallower depths 
o f 15, 5, and 0cm (6, 2 and Oin). Analysis of variance tests revealed statistically significant 
differences between the selectively grouped vegetation community types and decimeter-level 
changes in elevation data. Lastly, Chapter 6 offers a summary with concluding statements 
that advocate the use o f remote sensing as a resource management tool that should be used 
more often and for more tasks.

xiv
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The world’s coastal zone is one o f  the most dynamic areas o f  the world, with over 

440,000 km of shoreline where the processes of the land and sea are brought together (Cooke 

and Doomkamp, 1990; Krabill et al, 2000). Coastal zones do not have well defined 

boundaries but are considered to be the terrestrial area landward o f the land-sea interface that 

is influenced by the sea. Ahnert (1996) specifically describes this zone as including land 

influenced by wave action; the near-shore dune zone; and the zone where plant growth is 

influenced by salty groundwater, salt aerosols, and storms (Ahnert, 1996). Many issues affect 

coastal and marine resources including: population increase (Cohen et al, 1997), heavy 

metal inputs (Knight and Pasternack, 2000), excess nutrient loadings, over-fishing, input of 

overheated water from factories, habitat loss, sedimentation, marine and beach debris, oil 

spills, sea level rise (White and Pickett, 1985; Nicholls et al, 1994; Nicholls and Leatherman, 

1995), loss of biological diversity, and the introduction o f non-indigenous species (Marsh 

and Dozier, 1981; Smith, 1996; French, 1997). Disturbances along the coast have a profound 

effect on plant and animal life (Huggett, 1995).

One of the problems we face when setting up management programs for our coastal 

ecosystems is that they do not recognize artificial political borders (Cooke and Doomkamp, 

1990). Strategies to protect coastal ecosystems, therefore, have proven politically and 

physically difficult to implement (Turner and Schubel, 1994). Fortunately, technological 

advances are providing application tools to complement the needs and objectives of disparate 

organizations faced with the difficult process of rendering informed decisions designed to 

effect long-term sustainability o f our coastal habitat. These technology tools include: a) 

software models (Lam et al, 1998 (environmental monitoring}; Quattrochi et al, 2001
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{thermal urban landscapes}; Sanders and Tabuchi, 2001 {flood risk assessments}; b) 

geographic information systems (Jansen et al, 1990); and c) remote sensing (Harris and 

Ventura, 1995; Jensen, 1996; Cihlar et al, 2000a; Steele, 2000). These technologies are 

available and ready for inclusion into a resource manager’s tool-box irregardless o f their 

political or organizational affiliation. Resource managers should closely evaluate the present 

capabilities, and limitations, o f each o f these technologies, with special attention given to the 

use o f these tools for the generation o f the geospatial data needed in support of GIS and 

ecological modeling (Wessman et al, 1998).

Long-term studies o f varied environments and the monitoring o f competing 

influences o f nature and man are critical for decision-makers to have information enabling 

them to make informed judgments (Cooke and Doomkamp, 1990; Cihlar et al, 2000b; Slater 

and Brown, 2000). The term "landscape", as defined by Lyle (1999), is considered to be an 

ecosystem comprised o f biotic and abiotic element interaction, flow o f energy and materials, 

and land resource inventory. A complementary description of landscape as defined by 

Huggett (1995) is the land surface and its associated terrestrial habitats mapped at medium 

scales. Remote sensing has been used for landscape characterization (identifying and 

describing by cover type), monitoring changes (presence or absence) and assessing the effect 

of the change on the quality o f the landscape in environmentally sensitive areas (Slater and 

Brown, 2000).

A land resource inventory is a necessary beginning for environmental planning or 

resource management decision-making (Lyle, 1999). Remote sensing provides a fast,
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accurate, affordable means to acquire such land resource data (Redfem and Williams, 1996). 

This land resource data is crucial to assist in determining the functioning o f terrestrial 

ecosystems (Cihlar et al, 2000b). Much o f this needed data has yet to be acquired. For 

example, United States land resource data (specifically, Anderson level II data) is only about 

60% complete for all land resource cover classes (Yang et al, 2001; Vogelmann et al, 2001). 

Additional data will need to be acquired to fill in the missing 40%, and updated data sets o f 

the present 60% coverage will be routinely required from a growing user community 

expectation for current land cover data for monitoring purposes (Vogelmann, et al, 2001).

Landscape researchers and policy makers require data at different spatial scales and 

resolution (Gulinck et al, 2000). Ecologists study environmental problems that require 

understanding across many scales, from an individual organism to large landscape mosaics 

(Huggett, 1995). Some scientists feel that land cover will tend to exhibit spatial patterns 

when determined, at least partially, by landform or climate (Steele, 2000). All environments 

are continuous in spatial structure, yet we can only sample a finite number of sites (Webster 

and Oliver, 2001). Cihlar et al (2000a) attempted to capture total landscape variability by 

use o f high-resolution imagery sample plots (in lieu o f ground plots) strategically sampled 

across a large-area coarser resolution image scene. Processes and patterns o f variation 

important at one spatial scale might be unimportant at another, as the relative importance o f 

variables might change as the scale changes (Meentemeyer and Box, 1987). Further 

understanding o f various scales o f importance, such as local or regional, can be enhanced by 

the geostatistical analysis o f  remotely sensed data. For example, a variogram can identify 

different scales o f variation present. Factorial kriging can be used to filter these variations
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(Oliver et al, 2000). Understanding regional patterns o f  ecosystem properties will be 

important if  we are to monitor ecosystem change effectively due to land use and climate 

change.

Bridging the gap between landscape policy and remote sensing is needed because 

there is a divergence in central goals, vocabularies and methods (Gulinck et al, 2000). 

Remote sensing offers a powerful tool for landscape cover and distribution mapping, 

landscape metrics, and assessment o f temporal change (Gulinck et al, 2000). It should be 

driven by scientific hypothesis and any fixture modeling should account for a remote sensing 

and landscape process model merge (Wessman et al, 1998). To date, integration o f remote 

sensing into landscape ecology research and applications has been relatively scarce (Gulinck 

et al, 2000). Ecological models should be designed to use direct or derived variables from 

remote sensing (Wessman et al, 1998). Landscape criteria or indicators for which remote 

sensing input would be considered very useful were determined to be: land cover diversity, 

degree o f urbanization, degree o f  greenness, quantity o f open water, size and form o f 

biotopes, spatial arrangement o f  biotopes, vegetation vitality and disturbances, and land use 

change (Gulinck et al, 2000). Remote sensing input to measuring biodiversity was 

interestingly evaluated to be o f very limited input (Gulinck et al, 2000). Overall, remote 

sensing provides the best tool available for looking at large areas o f  the earth’s surface to 

analyze, map and monitor ecosystem patterns and processes (Gould, 2000).

Multi-spectral remote sensing acquires visible (blue, green and red), reflected- 

infrared (IR), and thermal IR regions o f the electromagnetic spectrum. Reflected and emitted
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radiation are collected and made ready for future processing and analysis (Avery and Berlin, 

1992). To detect a landscape feature, the spatial resolution of the sensor should be less than 

half the size of the feature to be measured (Jensen, 1996). High spatial ground detection 

resolution (GDR) might not increase the ability to detect and classify smaller features 

because o f the concomitant decrease in class spectral separability resulting from increased 

interclass variability (Hay et al, 1996). Features that were too small or were imperceptible to 

the detection capabilities o f sensors such as SPOT XS and panchromatic (20 and 10m spatial 

pixels) or Landsat Thematic Mapper (30m spatial pixels) may soon be identified by emerging 

high-resolution commercial sensors with 4 and lm spatial resolution (Aplin et al, 1997; 

Lillesand and Keifer, 1994).

A program to address the integration o f ecology-based models with GIS and remote 

sensing at the National Center for Geographic Information and Analysis was started a decade 

ago (Ehlers, 1995). However, remote sensing has only recently been embraced by the 

resource management community. Ehlers (1995) cited over-zealous promotion o f remote 

sensing as a solution, restrictions on data use, and lack of attention to user needs as reasons. 

Based on recent proliferation o f literature on the application of remote sensing to 

environmental issues, this attitude seems to be changing (Redfem and Williams, 1996; Phinn 

et al, 1999; Kenward, 2000; Hill et al, 2001; Judge et al, 2001).

Coastal zone environments may best be examined from two perspectives: 1) a 

ground, field-based investigation, and 2) from a remote distance (Turner, 1994) with 

remotely sensed imagery offering a synoptic top-down view. Field investigations provide
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detailed levels of information that are unattainable from remote image source. This 

information supplements remote sensing by providing validation points for image 

classifications and by serving as training sample points from which supervised image 

classifications may occur. Remote sensing can simplify field sampling because it can be 

used to delineate spatial and temporal patterns in the landscape that can be used to optimize a 

sampling design (Wessman et al, 1998).

Phinn et al (2000) described a successful framework for selecting optimal data sets 

and image processing techniques at three coastal environment study sites by combining 

remote sensing and landscape ecology concepts. The critical question their work raised was 

how does one choose from the vast collection of emerging sensors and processing methods 

(Phinn et al, 2000)? Chapter 2 o f this manuscript has attempted to answer this question, at 

least in part. Phinn et al (2000) predict an increase in the number o f potential users o f 

remotely sensed data due to the increase in sensors (approximately 10 available as o f year 

2000 with spatial resolutions between 5m and 1km) and increased GIS and image analysis 

software packages. The integration o f remote sensing and GIS technologies has also proved 

especially useful (Zhenkui et al, 2001).

The overall purpose o f this collection of studies was to show how coastal zone 

landscape can be characterized using remote sensing and empirical model development to the 

betterment o f the resource management community. The following chapters discuss the 

application o f remote sensing in a progressive sequence that can be used by resource 

managers.
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Chapter 2 examines resolution requirements o f imagery for accurate landscape 

classification. Results from this work provide a basis to select appropriate remote sensing 

imagery to suit a coastal area land cover inventory. The chapter also provides insight into the 

expected classification capability o f emergent commercial satellite systems. High-spatial 

resolution imagery used in this study responds to requirements o f  clientele in exploitation o f 

improved sensor imagery (Aplin et al, 1997). Chapter 3 investigates the capability of 

imagery to provide information beyond simply land cover classification by remotely 

assessing biomass differences in stands o f Phragmites australis, measured by a high- 

resolution multi-spectral imagery source. Phragmites australis is monitored by resource 

managers because o f its propensity to out-compete other native and threatened plant species 

(Marks et al, 1994; Pyke et al, 1999). Chapter 4 describes a post-classification technique that 

introduces expert knowledge into the imagery-derived map classification process. A 

landscape cover classification map compiled from imagery was visually assessed for 

blunders based on ecological knowledge o f  the area. This information was used to 

parameterize a spatial model of the environment. Deterministic rules are well suited to areas 

with well-defined boundaries between land cover types (Harris and Ventura, 1995) and, as 

suggested by Hutchison (1982), are easily developed. Step-by-step examples are provided to 

encourage acceptance o f this post-classification modeling methodology. Chapter 5 discusses 

the development o f empirical models that utilize vegetation class to predict a) soil type, b) 

soil compaction rate, and c) decimeter-level elevation range. In the absence o f  a direct 

remote sensing method for measuring soil conditions, and elevation where the surface is 

concealed by vegetation, the vegetation itself was used a surrogate to estimate these indirect 

landscape variables. Collectively, chapters 2 to 5 address the common issues and concerns a
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resource manager faces with the monitoring and characterization o f landscape conditions 

within a coastal zone. Lastly, chapter 6 summarizes the findings and provides 

recommendations for future implementation of remote sensing to support landscape 

characterization.
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Chapter 1 to Chapter 2 Transition

A need for remote sensing as a critical technology to support landscape management was 

described in chapter 1. Chapter 2 will evaluate the accuracy o f emerging high spatial 

resolution image source, given 70- and 25-nanometer spectral bandwidths, for classifying 

landscape cover characteristics. Broad community-level vegetation types were mapped and 

ground-truthed for accuracy using one o f four combinations o f spectral and spatial resolution. 

High-resolution satellite and airborne imagery poses the question to potential users: Is this 

the preferable source material to use for classification? While the selection of an image 

source depends on a user's need for particular cover classes, the next chapter illustrates 

classification differences that occur in the mapping of identical features using variable 

spectral and spatial resolution image data.
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Abstract

Four multi-spectral imagery combinations (25nm/lm, 25nm/4m, 

70nm/lm, 70nm/4m), each employing 6 distinct training sample 

methods for a total o f 24 total combinations, were processed to compile 

24 classification map products containing thirteen land cover features 

over a coastal study site at Fort Story, Virginia, USA. Eight themes 

comprised natural features (oak and American holly forest, mixed 

forest, loblolly forest, maintained grass, beach grass, ocean, sand, clay 

soil) and 5 themes comprised cultural (man-made) features (asphalt, 

concrete, gray shingle roof building, brown shingle roof building, and 

shoreline rip-rap). Each o f  the 24 classifications was segmented into 3 

groups: a) all landscape features, b) natural landscape features, and c) 

cultural landscape features, creating a total o f 72 landscape 

classifications. Final classifications were tested by ground-truth points, 

error matrices, and scores for Kappa and overall accuracy. Accuracy 

results were based on the contributions of a) spectral bandwidth and b) 

spatial resolution, c) combined spectral and spatial contribution, and d) 

training sample methods to classification accuracy. Spectral bandwidth 

25nm was better for “natural and cultural”, and “cultural” features. 

Pixel resolution was significantly different for the classification o f 

“natural” features, where 4m pixels outperformed lm  pixels. The 

combination o f 25nm spectral and 4m spatial resulted in higher Kappa 

scores than other combinations, however, the only statistically
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significant differences occurred between accuracy scores achieved from 

25nm/4m imagery and 70nm/lm imagery in the classification o f natural 

and cultural, and natural features. Training sample methods that defined 

larger numbers of training sample pixels for the classification of 

landscape features resulted in more accurate classification maps. 

Accordingly, differences in methods of training sample selection were 

significant, as determined by the differences in overall accuracies 

attained by the different sampling techniques.

Introduction

Landscape data acquired through imagery can represent inherent landscape variability 

(Wessman et al, 1998; Oliver et al, 2000), especially when data are spatially dependent as are 

most natural features (Webster, 1985). Accordingly, as Webster and others have stated from 

the geostatistical disciplines (see for example Burgess et al, 1981; Webster and Oliver,

2001), field data acquired by a classic random sampling design may not exhibit the data 

independence condition required for follow-on statistical analysis. Classical statistical 

sampling methods may not be adequate to capture true spatial scales (Webster and Oliver, 

2001). Sampling designs based on inherent spatial variability in a remote sensing scene 

would help minimize difficulties that arise from a classical random-based field sampling 

(Wang et al, 2001). Field samples should be acquired to support the training and testing of 

the coincident imagery (Congalton and Green, 1999), and the imagery resolution should 

directly support the level o f land-use land-cover (LULC) classification desired by the user 

(Phinn et al, 2000). For example, Jensen (1996) references the four-tiered U.S. Geological
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Survey (USGS) land classification system and pertinent image sources needed to provide 

such information. Greater detail at larger map scales requires lower altitude imagery, with 

the implication that higher spatial resolution would solve a user need for finer detail at 

multiple scales (Aplin et al, 1997). Predictions o f spectral characterization difficulties from 

emerging high-resolution imagery sources originated from several sources (see Lillesand and 

Keifer, 1994; Aplin et al, 1997).

Multi-spectral imagery is acquired by satellite or airborne systems with different 

spectral bandwidths and spatial pixel resolutions. Choices o f type o f imagery are growing 

with the advent o f each new system that is launched and users must choose the best types to 

suit their intended needs. There is also a wide choice o f methods for processing image data 

(Civco, 1998). Cihlar et al (2000) described their solution for selecting high-resolution 

imagery sample sites from large area coarse resolution imagery. Knowledge o f land cover 

distribution over large areas is increasingly important for scientific and policy purposes and 

is a key input for land use and management decisions (Cooke and Doomkamp, 1990; Cihlar 

et al, 2000a). Most imagery users are interested in maximizing the accuracy o f the classified 

land cover types and this desire may lead to a spatial aggregation o f pixels (Vogelmann et al, 

2001). However, many land managers are interested in Anderson Level III type 

classifications, or species level vegetation. Accuracies reported by Skidmore and Turner 

(1988) for this level of mapping have been low with the best scores between 65 and 75 per 

cent for Thematic Mapper resolution imagery. When mapping natural environmental 

features it is probable that uncertainty in class cover assignment will lead to errors (Zhang 

and Stuart, 2001).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2-4

The objective o f this study was to compare variable multi-spectral imagery bandwidth 

and pixel resolutions, as well as variable training sample selection methods, and statistically 

assess the results o f landscape classification generated from the numerous combinations o f 

resolutions and sample methods to determine if certain combinations were more accurate 

than others. Questions such as: “What source(s) o f imagery are best in terms of bandwidths 

and pixel size to minimize inevitable error in landscape classification o f both natural and 

man-made features?” and “Which training sample method works best for achieving the 

highest optimal solution for accuracy?” were addressed. Identification o f preferred 

bandwidth and pixel sizes would assist in future development o f sensor capability and in the 

selection of appropriate image data from multiple commercial vendors. Determination o f 

preferred training sample method(s) based upon unique imagery bandwidth and pixel size 

should improve landscape classification accuracy. The level o f landscape features to be 

classified was pre-determined to be Anderson Level II, with land cover types represented as 

sub-divisions of larger land cover types (e.g., forest land represented at Level I is depicted as 

deciduous, evergreen, and mixed at Level II), and the classification level formed the basis for 

all analyses, assessments, and recommendations. A different level o f landscape detail might 

have altered the results.

Null hypotheses tested at the 95% confidence level were:

a) Hoi-accuracy results generated for 70nm and 25nm spectral bandwidth imagery 

derived landscape classifications would be equivalent;
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b) Ho2 -accuracy results generated for lm and 4m spatial pixel size imagery derived 

landscape classifications would be equivalent;

c) Ho3 -accuracy results generated for 70nm/4m, 70nm/lm, 25nm/4m, and 25nm/lm 

resolution imagery derived landscape classifications would be equivalent; and

d) Ho4 -accuracy results generated for 6 varied training sample method derived 

landscape classifications would be equivalent.

We evaluated various combinations o f 4-channel multispectral airborne imagery similar in 

bandwidth and pixel size to the emerging high resolution EK.ONOS satellite imagery. Image 

classification accuracy was assessed by field sample plots, an approach endorsed by Milne 

and Cohen (1999). A combination o f two spectral bandwidths, two pixel sizes, and six 

training sampling methods were evaluated with the accuracy o f classifications discussed in 

sequence by: a) spectral bandwidth contribution, b) spatial pixel size contribution, and c) a 

combination o f both bandwidth and pixel size. For each evaluation, accuracy was 

individually addressed against (i) all landscape features, (ii) natural landscape features only, 

and (iii) cultural landscape features only. Evaluation of spectral and spatial resolution 

analysis was followed by an evaluation o f training sample methods, once again individually 

addressed against (i) all landscape features, (ii) natural features only, and (iii) cultural 

features only. A recommendation for bandwidth, pixel size and training sample method was 

provided based on desired landscape features as reference for future coastal landscape 

classification in similar geomorphology.
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Methods 

Study site

Fort Story, Virginia, USA, is a small joint services military installation situated along the 

coast at the intersection o f the Chesapeake Bay and Atlantic Ocean (Figure 1). This 

prominent cape location provides a safe harbor for endangered flora and fauna and is an 

example o f tenuous competing coastal land uses. Fort Story is a mixed land-use land-cover 

installation. The study site selected was approximately 400 by 500 meters in size and 

contained all landscape classes found at the Fort except forested wetlands (sand, maintained 

grass, clay soil, loblolly pine forest, hardwood forest, mixed forest, beach grass, ocean, 

asphalt pavement, rip-rap shoreline, concrete pavement, and variable roofing material). The 

area is heavily influenced by anthropogenic activity. Complexity of cultural and natural 

features found at this site provided a suitable challenge for comparing variable combinations 

o f spectral bandwidth, spatial pixel size, and training sample method combinations. Land 

resource issues that demand accurate landscape classification include beach erosion, 

inadvertent vegetation removal, soil compaction, introduction of non-native species, 

threatened species survival, and preservation of forested wetlands.

Imagery Acquisition

Four-channel multi-spectral imagery was acquired over the coastal study site o f Fort 

Story, Virginia, on the cloud-free morning o f 15 October 1999. Two flights were flown to 

acquire imagery collected through cameras equipped with 70 and then 25nm band 

interference filters. Band centers for each flight were 450nm (blue), 550nm (green), 650nm
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(red), and 780 (near infra-red, NIR). Flight one occurred between 0826 and 0840 hours using 

70nm filters that closely emulated conventional satellite bandwidths. Spatial ground 

detection resolution (GDR) was approximately lm. The second flight was between 0947 and 

1005 hours equipped with custom 25nm band-pass filters. Band centers and GDR were 

identical to the earlier flight. Four-meter spatial resolution flights were not acquired 

separately. Rather, to minimize change in both environmental conditions and future geo

registration issues, the 25 and 70nm lm  pixel images were spatially degraded to a resolution 

o f 4m using a mean degradation filter available within ERDAS Imagine software (ERDAS 

Inc., 1999). Average reflectance o f  sixteen lm pixels adequately represented the spectral 

response that would have been returned had corresponding 4m pixels been initially acquired. 

One-meter imagery was geometrically tied-down to a U.S. Geological Survey digital ortho

photo quad (DOQ) prior to the creation o f the 4m image scenes. The 25nm and 70nm 

imagery over the study sites was registered with control point root mean square error o f 

approximately lm. Each o f the four images covered identical size and area over Fort Story. 

The four scenes available for classification and comparison were:

1.1m spatial with 70nm spectral

2. lm  spatial with 25nm spectral

3. 4m spatial with 70nm spectral

4. 4m spatial with 25nm spectral

Five hundred and twenty-three sampling locations were randomly assigned to the 

imagery study area. Appendix 1 is a listing o f 250 geographic locations that were classified
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in the field; the remaining 273 sampling locations were easily photo identified by an analyst 

with total awareness of all landscape conditions within the small study plot. Each sample 

location was field-classified into one o f 13 possible landscape categories. Precise 

Lightweight Global Positioning System (PLGR) was used for real-time field positioning at an 

accuracy o f  10m horizontal. In addition, an extensive assemblage of photo identifiable 

cultural features existed within the study area and facilitated visual field navigation to the 

sample locations. If a field sampling location was at the edge o f two landscape features and 

there was a risk o f misclassification because of horizontal accuracy limitations, the field plot 

was re-positioned away from the edge and wholly into a single feature class. A radial 

sampling plot distance of 5m was used during classification. Loblolly pine dominated the 

forest overstory in one stand, with suppressed hardwoods and understory shrubs. Seventy- 

five additional training sample points were randomly acquired for use in training sample 

generation and made available for image processing. Training and testing locations were 

selected from the lm spatial / 25nm spectral data and applied to each o f the other three geo- 

registered spatial image sets. Natural landscape classes identified for classification from each 

image set were common U.S. Geological Survey Land Use/Land Cover Classification 

System data themes (Jensen, 1996). Cultural landscape themes selected reflected a research 

interest in disparate road surface and roofing material, as well as interest in remotely 

mapping the sustainability o f rip-rap (boulder-lined) shoreline protection. Landscape features 

classified for this study were:
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Natural Features

1. Sand

2. Maintained Grass

3. Soil (clay)

4. Loblolly pine dominated maritime forest

5. Live oak and American holly dominated maritime forest

6. Mixed Forest (pine and hardwood)

7. Beach grass

8. Ocean

Cultural Features

9. Asphalt

10. Rip-Rap (extensive boulders along ocean shoreline)

11. Concrete

12. Gray Shingle Roof Building

13. Brown Shingle Roof Building

Spectral training set data were acquired for all four image combinations for each of 

the thirteen terrain classes. Minor changes in reflectance values between the 70 and 25nm 

imagery can be primarily attributable to a sun angle change from 0826 to 0947 hours, the 

respective starting times for the 70 and 25nm flights. Although radiometric corrections were 

individually completed for the 70 and 25nm image data, radiometric correction to adjust one
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image set to match the other was not attempted. The 25nm imagery was the beneficiary o f 

slightly shorter shadows and higher radiant energy over the study site, attributable to a higher 

sun angle. The degree to which this sun angle difference may have independently influenced 

(negatively or positively) final classification accuracy is unknown. Seven transformed 

divergence scores measured between-class separability for 25nm imagery that were less than 

1950, while only five scores less than 1950 were computed for between-class separability for 

the 70nm imagery, despite the 70nm image's longer shadows from lower sun angle.

Training sample selection methods chosen for evaluation were choices that would be 

available to imagery analysts using commercial image processing packages for remotely 

sensed image classification. Training samples ranged from the simplest, most objective 

methods, to the most difficult and subjective methods, generally providing the greatest 

amount of representative class information. “Seed grow” is a method available within 

ERDAS Imagine that searches surrounding pixels at a user defined euclidean distance from 

the identified point (seed-pixel) and selects all similar pixels to add to the training sample set 

(ERDAS, 1999). Identical geographic locations were used for all point methods. Polygon 

training samples were screen digitized by an image analyst surrounding all previously chosen 

point locations. Training methods investigated were:

1. Point method

2. Point with 2-eucIidean distance seed grow.

3. Point with 5-euclidean distance seed grow

4. Point with 15-euclidean distance seed grow
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5. Point with 25-euclidean distance seed grow

6. Polygon method

Each training sample method returns a training sample set o f  pixels that may be tested 

for separability, one class from the other. With greater separability o f training samples 

representing the landscape feature classes, there is greater chance for accurate classification 

o f the imagery into correct feature classes. The technique for testing this separability was to 

use a transformed divergence measurement as described by Jensen (1996). Both the mean 

and covariance of the training sample class statistics are used in divergence to identify 

classes o f optimum separability and classes that overlap. Transformed divergence 

exponentially adjusts the between-class scores and reports values on a scale between 0 and 

2000, with 2000 indicating excellent between-class separation (Jensen, 1996).

Comparative Assessment

Accuracy of each image-derived landscape classification was determined by 

comparing the field truth points to the mapped landscape themes (Congalton and Green,

1998). Landscape classes for each image were computed using each o f the 6 identical 

training sample methods, by a maximum likelihood classification algorithm that utilizes 

covariance o f pixel signatures in the final class selection. Maximum likelihood was selected 

over the less computational algorithms (minimum distance or parallelpiped) because it 

provides a more rigorous technique that can capture pixel level probability information useful 

for follow-on research into inclusion o f a posteriori pixel probabilities and their 

propogational effect on decision software models. A total o f 24 landscape classification
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maps (6 training methods * 4 spectral / spatial combinations = 24 maps) were created for 

accuracy assessment. Error matrices were generated in table format to determine accuracy 

levels and to assess statistical significance of the results.

Kappa statistics (Cohen, 1960; Verbyla, 1995; Congalton & Green, 1999) were 

computed to test for agreement between landscape conditions expected (defined by reference 

ground truth points) and those that were found (landscape classification maps). The result of 

Kappa analysis is the KHAT statistic (Cohen, 1960). The range of values is similar to 

Pearson's r correlations where values can range from -1.0 to +1.0, and 0.00 represents no 

agreement whatsoever. Positive KHAT scores are expected because remotely sensed 

classifications and reference data should be positively correlated (Congalton and Green,

1999) (see equation I). Applying a scale imposed by Landis and Koch (1977), high Kappa 

scores were considered as 0.80 or greater, moderate scores between 0.40 and 0.80, and low 

scores were less than 0.40.

In the following equations, let k  denote categories o f remotely sensed classification; 

let pif= proportion of samples classified into category i found in the zth row; let p,+= 

proportion of samples classified into category i (z = 1, 2, . . . . ,  k) found in the y'th column, and 

p+, = proportion of samples in the reference classification and category j  (/= 1,2, . .., k) found 

in the zth row.
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Where *
P o  2  f a

equals the actual agreement between reference data and classification (or overall 

accuracy), and

k

P c  2  P i + P + l
i= \

equals the chance agreement between reference data and classification, and

P o  -  P c
Kappa = --------- (1)

1 -  P c

Z-test statistics were then computed for each Kappa score to test that agreement 

between the remotely sensed classification and the reference ground data was better than 

random chance, at the 95% confidence level (see equation 2).

Z = Kappa / Sqrt (Kappa variance) (2)

For a detailed description on computing the square root of Kappa variance, refer to 

Congalton and Green (1999), where large sample variances were computed for overall Kappa 

scores using the Delta method. Statistical differences between the Kappa accuracy results in 

the landscape classifications were assessed by comparison o f best Kappa scores within a 

landscape category against all other Kappa scores, testing at the 95% confidence (see 

equation 3). Null hypothesis is rejected if the z-score computed from equation 3 is greater 

than 1.96. The rationale for this test is that future imagery will likely appear in the form of
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one o f these four possible image combinations and, if  given a choice o f the four 

combinations, which selection is the best? The best Kappa score, and all others considered 

statistically the same, determined image combinations with the highest classification 

accuracy. All image combinations with similarly high Kappa scores were also compared 

later, testing ANOVA for respective overall accuracy scores to determine if  these scores were 

statistically different.

|Kappal - Kappa2| / Sqrt (Kappal variance + Kappa2 variance) (3)

Kappa scores for each landscape classification were grouped into four respective 

spectral -spatial imagery combinations: 25nm/lm, 25nm/4m, 70nm/lm, and 70nm/4m 

image combinations. These four groups were then subdivided into the six training sample 

methods selected for image processing. The rationale for this test was that high-resolution 

image data could negate conventionally recommended methods for training sample selection 

and subsequent classification processing. Accordingly, Kappa scores from identical image 

combinations were compared to each other using equation 3 above to test for statistical 

differences in the training sample methods. Similarly high Kappa scores were also compared 

by their respective overall accuracy scores. All accuracy scores within 3% of the highest 

overall accuracy score were assessed as representing training sample methods that would be 

most effective for the respective spectral-spatial imagery combination.

In addition to Kappa scores, overall accuracy percentages were generated for each of 

the landscape classification maps. Analysis of variance (ANOVA) testing (StatSoft, 1995)
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was applied to determine if  accuracy scores derived from the 24 spectral -  spatial 

combinations were statistically different from one another at the 95% confidence. Overall 

accuracy scores were grouped into logical classes (spectral, spatial, spectral and spatial) and 

variances among the respective groups compared for similarity by traditional ANOVA 

testing. Criteria for use o f ANOVA were met (normal distribution, randomness of data (total 

data population is tested in this case), and data independence, tested by the error terms of the 

variates) (Sokal and Rohlf, 1995). ANOVA F-statistics were examined to determine if 

spectral groups (25 and 70nm images), spatial groups (1 and 4m pixels), and combined 

spectral-spatial groups were statistically different from one another. Overall accuracy scores 

were determined for each of the classifications by dividing the trace, or sum of correct 

measurements in each error matrix leading diagonal, by the sum o f the total in each row (or 

column) (Congalton and Green, 1999).

Accuracy scores were not high for any landscape classifications. While an increase in 

accuracy classification might have been achieved with continued image processing, no 

attempt was made to improve the accuracy of any initial classification score, in the belief that 

this would introduce considerable individual bias into the experiment. By avoiding the 

temptation to improve the accuracy scores, all results for this test were achieved by the same 

methods and could be compared on an “equal footing”.

Results

Divergence scores less than or equal to 1950 for any classification cover pair are 

identified in Table 1 for each spectral -  spatial imagery combination. All other pairs have a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2-16

score between 1951 and 2000. Low transformed divergence scores consistently improve 

when pixel size increases from lm to 4m (e.g., Loblolly pine / unmaintained grass; Loblolly 

pine / hardwood forest). Similarly, whenever pixel sizes are the same, several divergence 

scores improved when changing from a 70nm to 25nm bandwidth (e.g., Loblolly pine / 

unmaintained grass; hardwood forest / unmaintained grass). Variability may be the result of 

pixel size, spectral bandwidth, or both.

All imagery combinations have been reclassed into spectral, spatial, and spectral- 

spatial groupings for comparison and evaluation. For the spectral component, Kappa and 

overall accuracy scores for 25 nm spectral images are classed separately from 70nm spectral 

imagery.

Table 2a (all features) shows Kappa scores separated into 25 and 70nm spectral 

bandwidth groups. The spectral results from the 25nm imagery provide greater overall 

accuracy. The top 25nm result (25nm/4m/seedl5) compared to the top 70nm result 

(70nm/4m/seed25) showed no statistical difference. All remaining 70nm combinations were 

statistically different from the best 25 nm outcome. The narrower band widths provided five 

possible image combination/training sample solutions that were equally effective, while the 

wider 70nm bandwidth provided one solution. Kappa results suggest that the 25nm 

bandwidth did a better job at classification o f natural and cultural features over the Fort Story 

study area. Table 2b shows natural features with Kappa scores separated into 25 and 70nm 

spectral groups. There are no statistical differences with any of the spectra-spatial-training 

sample combinations as reported by these Kappa results. Table 2c shows cultural features,
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with Kappa scores separated into 25 and 70nm spectral bandwidth groups. The spectral 

results suggest the 25nm imagery provides greater classification accuracy. The top 25nm 

result (25nm/4m/polygon) is statistically similar to the top three 70nm results but different 

from the remaining nine combinations o f 70nm images. The narrower 25nm bandwidth 

provided seven possible image combination/training sample solutions that were equally 

effective, while the wider 70nm bandwidth provided only three effective solutions. Kappa 

results suggest that the 25nm bandwidth did a better job at classification of “cultural” 

features over the Fort Story study area as the top four 25nm scores are higher than the top 

score for 70nm imagery.

Table 3 shows overall accuracy scores separated into 25 and 70nm spectral bandwidth 

groups, identified by classification of natural and cultural, natural, and cultural features. 

Grouping of scores by spectral bandwidth enabled analysis o f  variance (ANOVA) tests to 

compare the accuracy scores from the two groups (Table 4). There were no statistical 

differences in overall accuracy results for all, natural or cultural features when every training 

sample method was applied. However, with the removal o f training sample methods “point” 

and “seed grow 2” eliminated because o f consistently poor performance, ANOVA results for 

“natural and cultural” and “cultural” features showed statistical differences between the 

spectral groups at the 95% confidence level. Figures 2a-c (natural and cultural, natural, 

cultural) show the overall accuracy o f each image combination by spectral bandwidth group, 

shown in decreasing order o f  accuracy. The plots illustrate 25nm data achieved higher 

classification accuracy for natural and cultural, natural, and cultural feature types. 70nm 

scores averaged about 5% less accurate than the 25nm scores. ANOVA results affirmed the
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Kappa findings; the narrowness o f  the 25nm bandwidth has had a statistically significant 

positive effect on all and cultural feature discrimination and classification. Natural features 

alone were not statistically affected by the differences in spectral bandwidth, with a recorded 

p-value = 0.20. The original null hypothesis (Hoi-accuracy results generated for 70nm and 

25nm spectral bandwidth imagery derived landscape classifications would be equivalent at 

the 95% confidence level) was accepted for natural landscape features and rejected for all 

and cultural landscape features.

For the spatial comparison, Kappa and overall accuracy scores for lm  pixel imagery 

are classed separately from 4m pixel sizes. Table 5a (natural and cultural features) shows 

Kappa scores separated into 1 and 4m pixel sizes. The top Kappa score is from a 4m spatial 

image (25nm/4m/seedl5). There is no statistical difference with this score and the top two 

scores from the lm imagery, as indicated by a pairwise test statistic o f  1.44, but all other lm 

imagery scores are different. The top four finishing 4m imagery are all very similar (test 

statistics 0.00 to 0.58 with 1.96 as the defining critical threshold). The coarser pixel size 

provided four possible image combination/training sample solutions that were equally 

effective, while the finer lm spatial imagery provided only two effective solutions. Kappa 

results show that the 4m spatial imagery did a better job at classification o f “all” features 

over the Fort Story study area. Table 5b shows natural features with Kappa scores separated 

into 1 and 4m pixel groups. There are no statistical differences with any o f  the spectra- 

spatial-training sample combinations as reported by these Kappa results. Neither lm  nor 4m 

performed better. Table 5c shows cultural features with Kappa scores separated into 1 and 

4m spatial pixel groups. The top three Kappa scores are from a 4m spatial image. There is
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no statistical difference with the top five finishing lm imagery as indicated by the pairwise 

comparison to top scores test statistic o f 1.67. The top four finishing 4m imagery are all 

statistically similar (test statistics 0.00 to 0.84 with 1.96 as the defining critical threshold). 

Kappa results suggest that the 4m spatial imagery did a better job at classification o f 

“cultural” features over the Fort Story study area.

Table 6 shows overall accuracy scores separated into 1 and 4m spatial pixel groups, 

identified by classification o f natural and cultural, natural, and cultural features. Grouping 

of scores by spatial pixel size enabled analysis o f variance (ANOVA) tests to compare the 

accuracy scores from the two groups. Table 7 lists ANOVA results comparing 1 and 4m 

scores. There were no statistical differences for natural and cultural, natural, or cultural 

features, regardless of training sample method applied. With the removal o f training sample 

methods “point” and “seed grow 2”, eliminated because of consistently poor performance, 

ANOVA results comparing 1 and 4m scores showed statistically significant differences in 

overall accuracy scores for natural landscape features (p-value = 0.004), and no statistical 

difference for natural and cultural, or cultural landscape features. ANOVA results differed 

from the Kappa findings. Figures 3a-c (all, natural, cultural) depict overall accuracy o f each 

image combination by spatial pixel size group, shown in decreasing order o f accuracy. For 

landscape feature classification scenarios "natural and cultural" and "cultural", the plotted 

lines for spatial pixel sizes o f 1 and 4m intersected one another. There was not a clear and 

consistent separation of the overall accuracy scores based on pixel size. Conversely, for 

"natural" landscape features, the two lines were consistently distinct with 4m data always 

outperforming the lm data by an average o f approximately 5% overall accuracy. The
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original null hypothesis (Ho2 -accuracy results generated for lm  and 4m spatial pixel size 

imagery derived landscape classifications would be equivalent at the 95% confidence level) 

was accepted for natural and cultural, and cultural, landscape features, and rejected for 

natural features.

Lower resolution 4m pixels were better at capturing the overall feature reflectance 

signature and minimizing the variability in the training sample signatures. A more detailed 

evaluation of the accuracy achieved in classification o f the eight individual natural landscape 

feature themes was completed from a user’s (categorical row accuracy from the accuracy 

matrix) and producer’s (categorical column accuracy from the accuracy matrix) standpoint, 

using the seed grow-15 training sample selection method results. User’s accuracy was higher 

for all themes when 4m data were used as opposed to lm  data. Sand was the single 

exception to this finding, with higher scores achieved from the lm spatial imagery.

Producer’s accuracy results suggested that either 4 or lm  spatial resolution was acceptable; it 

really depended on the feature. Sand, ocean and maintained grass each scored higher with 

1 m data. Each o f  the three forest features responded better to the 4m data. Shadows, 

understory, and within canopy differences that might otherwise cause confusion with a small 

lm  pixel were minimized by the larger spatial pixel. Earlier unpublished findings by the 

author at an alternative study site corroborate this finding o f improved accuracy in forest 

classification from 4m data as compared to lm data.

Cultural features were adequately classified by 4m imagery. Visually, the degraded 

4m imagery does not represent man-made features with their inherent angular forms as neatly
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as the lm  imagery. It was not appealing to observe buildings as amorphous blobs when once 

they were cleanly defined rectangles. However, this did not adversely affect the accuracy.

It was encouraging to note that cultural features classified by 4m data were not reported to be 

statistically different from cultural features classed by lm  data. Despite the favorable 

classification achieved by the 4m data, from the standpoint o f  map output and end-user 

appeal, it is unlikely that the lm  imagery would be dismissed, if  available, in favor o f 4m 

data. The 4m derived landscape classifications did not look as good for portraying o f cultural 

features.

After evaluating the contribution o f the spectral and spatial properties o f  imagery 

independently, the two components were evaluated together to determine their contribution 

on the accuracy o f feature classifications. As before, both Kappa and overall accuracy scores 

for 25nm/lm, 25nm/4m, 70nm/lm, and 70nm/4m were classed separately. Table 8a (natural 

and cultural features) shows Kappa scores separated into 25nm /lm , 25nm/4m, 70nm/lm, and 

70nm4m classes. The Kappa results from the 25nm/4m imagery suggest greater 

classification accuracy is achieved from this combination than from any other combination of 

spectral - spatial imagery, as top scores are from 25nm/4m/seedl5 and 25nm/4m/polygon 

imagery. While there is no statistical difference between these top scores and the Kappa 

scores for 25nm/lm (pairwise comparison = 1.44) and 70nm/4m imagery (pairwise 

comparison = 0.58), with 1.96 as the critical threshold, the scores for the 25nm/4m imagery 

are clearly highest. No scores from 70nm/lm imagery are statistically close. Table 8b 

(natural features), shows Kappa scores separated into 25nm /lm , 25nm/4m, 70nm/lm, and 

70nm4m classes. There is no statistical difference with any spectra-spatial-training sample
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combination as reported by these Kappa results. Top scores, although not by much, come 

from the 25nm/4m and 70nm/4 imagery combinations. Table 8c is for cultural features, and 

shows Kappa scores separated into 25nm/lm, 25nm/4m, 70nm/lm, and 70nm4m classes. 

The top three Kappa scores are all from the 25nm/4m/polygon imagery, although there is no 

statistical difference with top score (Kappa = 0.77) and any o f the other spectral-spatial 

combination top finishing scores. Each combination has at least one training sample method 

combination that was statistically equivalent. The 25nm/lm combination reported 4 scores 

that were statistically equivalent although each of these scores is lower than the top three 

25nm/4m scores. These top three Kappa scores corroborate earlier findings for spectral 

bandwidth alone that suggested 25nm spectral bandwidth was better, as well as the earlier 

findings for spatial pixel size suggesting that 4m spatial pixel sizes were better. Kappa 

results suggests that the 25nm/4m imagery did a better job at classification o f “cultural” 

features over the Fort Story study area because the top three scores are attained with this 

resolution combination .

Table 9a to c (natural and cultural, natural, cultural) represent overall accuracy scores 

separated into 25nm/lm, 25nm/4m, 70nm/lm, and 70nm/4m groups. Grouping o f overall 

accuracy scores by combined spectral and spatial group enabled analysis o f variance 

(ANOVA) tests to compare the scores between the two groups. Table 10 initially lists 

selected ANOVA results comparing 25nm/4m (spectral -  spatial combination achieving the 

highest overall accuracy score) against 70nm/lm and 4m (the lowest scores), revealing no 

statistical differences for natural and cultural, natural or cultural features. Training sample 

methods “point” and “seed grow 2” were ultimately eliminated because of consistently poor
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performance. ANOVA results that excluded accuracy scores from these two training sample 

methods, comparing the 25nm/4m against all other imagery combinations, showed 

statistically significant differences in overall accuracy classification scores with 70nm/lm 

imagery for natural and cultural, and natural landscape features. There was no statistical 

difference for the cultural features. Image combination 25nm/lm was almost significantly 

different from 25nm/4m imagery. Figures 4a-c (natural and cultural, natural, cultural) depict 

the overall accuracy o f  each combination of spectral - spatial imagery, shown in decreasing 

order of accuracy. Image combination 25nm/4m consistently showed the highest overall 

accuracy scores for training sample methods used to classify natural and cultural, natural, and 

cultural features. The earlier null hypothesis (Ho3 -accuracy results generated for 70nm/4m, 

70nm/lm, 25nm/4m, and 25nm/lm resolution imagery derived landscape classifications 

would be equivalent at the 95% confidence level) was accepted for all combinations of image 

resolution except 70nm /lm , which reported a statistically significant difference with the top 

scores achieved from the 25nm/4m imagery for the classification o f  natural and cultural 

features, and natural features; consequently, the null hypothesis was rejected for equivalency 

o f 25nm/4m and 70nm /lm  classifications.

Table 11 summarizes the overall Kappa performance o f the 24 possible spectral - 

spatial combinations, taking into consideration the performance o f all training sample 

methods evaluated. The place order (first, second, third, or fourth) was determined by rank 

ordering all Kappa scores and assigning a rank o f 1 to the highest Kappa score and 24 to the 

lowest Kappa score. Lowest total cumulative rank order position for all training sample 

methods within each spectral -  spatial combination determined the placement o f each
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spectral-spatial combination into first, second, third, or fourth place. The best training 

sample finish for each spectral- spatial combination is also reported and is supporting 

evidence to the place ordering finishes. Combination 25nm/4m was the best overall 

combination of imagery achieving first place finishes in all possible categories. Conversely, 

combination 70nm/lm was the worst overall, consistently finishing last for all possible 

categories. This poor performing combination should closely represent lm  IKONOS 

panchromatic imagery after HSI transformation by its coincident ~70nm/4m multi-spectral 

image channels.

Tables 12a-c (natural and cultural, natural, cultural) list Kappa scores subdivided 

within the table into each o f the 6-training sample methods. All scores were pairwise 

statistically compared to the top scores. In Table 12a (natural and cultural features), top 

scores were achieved from the seed grow-15 and polygon training sample method, both from 

25nm/4m imagery. It is evident from this table that seed grow-5, seed grow-2, and point 

methods are not close to achieving the highest accuracy scores. Kappa scores derived from 

each training sample method were determined and compared in a pairwise manner against all 

other Kappa scores from the identical method. In Table 12b (natural features), curiously 

enough, top scores were achieved from the seed grow-25, polygon, seed grow-2, and point 

training sample methods, from the 25nm/4m and 70nm/lm imagery. Pairwise comparison o f  

the top Kappa scores indicated no statistical difference in training sample methods for the 

classification of natural features. In Table 12c (cultural features), top scores were achieved 

from the seed grow-25 and polygon training sample methods, once again originating from the
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25nm/4m imagery. It is evident from this table that seed grow-2 and point methods are not 

close to achieving the highest accuracy scores.

Table 13a list the overall accuracy scores, grouped by six training sample methods, as 

identified for the classification o f natural and cultural features. These groups o f values were 

used for an ANOVA test to determine if training sample methods contributed to statistically 

different overall accuracy scores. Table 13b is the ANOVA results listing the training 

sample methods that reported statistically different accuracy scores. Consistently, the seed 

grow-15, seed grow-25, and polygon training sample methods were statistically better than 

the point, seed grow-2, and seed-grow-5 methods for classification of natural and cultural 

features. Point method was the poorest performer, followed by seed grow-2 and seed grow- 

5. These findings strongly suggest that there were insufficient pixels to represent the feature 

classifications.

Table 14a lists the overall accuracy scores, grouped by six training sample methods, 

as identified for the classification o f natural features. These groups of values were used for 

an ANOVA test to determine if  training sample methods contributed to statistically different 

overall accuracy scores. Table 14b gives the ANOVA results listing the training sample 

methods that reported statistically different accuracy scores. Consistently, the seed grow-15, 

seed grow-25, and polygon training sample methods were statistically better than the point 

and seed grow-2 methods for classification o f natural and cultural features. Point method 

was again the poorest performer, followed by seed grow-2. These findings strongly suggest 

that there were insufficient pixels to represent the natural feature classifications.
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Table 15a lists the overall accuracy scores, grouped by six training sample methods, 

as identified for the classification o f cultural features. These groups o f values were used for 

an ANOVA test to determine if  training sample methods contributed to statistically different 

overall accuracy scores. Table 15b gives the ANOVA results listing the training sample 

methods that reported statistically different accuracy scores. Consistently, the seed grow-15, 

seed grow-25, and polygon training sample methods were statistically better than the point 

and seed grow-2 methods for classification of natural and cultural features. Point method 

was again the poorest performer, followed by seed grow-2. These findings strongly suggest 

that there were insufficient pixels to represent the cultural feature classifications.

For natural and cultural, natural, and cultural landscape feature classification alike, 

only seed grow-15, seed grow-25, and heads-up polygon digitizing were accepted as viable 

methods for achieving highest accuracy scores. Point and seed grow-2 training sample 

collection methods produced statistically unacceptable classification results. Seed grow-5 

method was also not effective for the classification o f natural and cultural features. Figures 

5a-c (all, natural, cultural) depict the overall accuracy derived from the different sampling 

methods with the four imagery combinations. Polygon, seed grow-15 and seed grow-25 

methods are always plotted with higher overall accuracy (%) than point, seed grow-2 and 

seed grow-5 training sample methods. The null hypothesis (Ho4 -accuracy results generated 

for each o f the 6 varied training sample method derived landscape classifications would be 

equivalent at the 95% confidence level) was therefore rejected for point, seed grow-2, and
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seed grow-5 training sample methods and accepted for the seed grow-15, seed grow-25 and 

polygon methods.

A total o f seventy-two error matrices were generated for assessing the accuracy o f the 

landscape classifications (24 combinations evaluated against all (i) natural and cultural 

landscape features, (ii) natural landscape features, and (iii) cultural landscape features).

These tables are given in Appendices 2-73 (Accuracy Assessments) and are summarized in 

accuracy assessment Tables 8a to c (Kappa scores) and Tables 9a to c (overall accuracy 

scores). Figures 6a-c (all, natural, cultural) graphically depict Kappa scores determined from 

accuracy assessments o f image classifications for natural and cultural, natural, and cultural 

features.

Discussion

Four-meter multispectral, lm  panchromatic, satellite imagery is still a newly available 

image combination with the IKONOS satellite originating the collection and dissemination o f  

this data resolution since 1999. No investigation by prior researchers into detailed accuracy 

assessments of high-resolution imagery such as IKONOS for classification o f land cover 

characteristics was found in the literature. Dare and Fraser (2001) documented a non- 

scientific visible comparison of standard IKONOS 4m multispectral imagery against a 

panchromatic fused image set that imitated lm  spatial accuracy over a coincident South 

African urban fringe area. The lm  imagery clearly showed individual small buildings, 

paths, and tracks not identifiable from the 4m image. Also, the panchromatic-multispectral 

fusion appeared to highlight differences in soil and vegetation conditions not visible in the
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standard 4m multispectral image. Moore (2000) examined coastal mapping techniques in 

cartography, photogrammetry, and GIS and cited recommendations appear to support the 

application of 1 and 4m spatial imagery. Conversely, there are ample documented reviews of 

the accuracy of landscape resource inventories derived from what would now be considered 

moderate spatial resolution 30m Landsat Thematic Mapper (Skidmore and Turner, 1988; 

Vogelmann et al, 2001, Yang et al, 2001). From these reviews, Anderson Level II land 

cover classes derived from Thematic Mapper were accurate about 65-75% o f  the time, 

leaving little hope for mapping at Anderson Level III, or vegetation species-level, to be 

sufficiently accurate to meet users needs. Data derived from Landsat Thematic Mapper is 

adequate for regional and national scale investigations while local scale investigations will 

require data sources o f higher resolution (Vogelmann et al, 2001).

Some scientists have suggested attempts to map at the species level could be replaced 

by the remote inventorying of canopy structural measurements such as Leaf Area Index 

(LAI) (Wessman et al, 1998). Supplementary information such as LAI may indeed suffice 

for particular regional scale projects but metrics such as these should not be considered as 

replacements for species level land cover mapping as this level o f mapping may yet be 

achievable at user acceptable accuracies. Species level vegetation mapping could be quite 

inferential as to the evolving state o f an ecosystem (see chapter 5 in this dissertation, as well 

as citations by Walker et al, 1989; Hayden et al, 1995; Shao et al, 1998; Slater and Brown, 

2000). Walker et al (1989) discussed the catena relationship o f  terrain, soils, and vegetation 

in an Alaskan scenario; Hayden et al (1995) addressed geomorphologic controls on 

vegetation that directly related to hydrogeochemical processes; Shao et al (1998) suggested
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that shoreline adjustments and proportion, and relative location o f woody vegetation are 

dynamically linked processes; and Slater and Brown used remote sensing derived vegetation 

changes to monitor ecological sensitivity areas in England. Chapter 5 o f this dissertation 

also demonstrates that species level vegetation mapping is crucial for establishing ecological 

relationships between vegetation, soil properties and elevation. High spatial resolution 

imagery, or narrow spectral bandwidth imagery, or some combination therefore, will provide 

the and acceptable remote image source for species level discrimination and classification.

Spectral bandwidth and spatial pixel size were evaluated to see if one variable or the 

other was dominant in determining accuracy. For all final evaluations, the decision to 

remove results derived from the minimalist point and seed grow-2 training samples was 

based on their consistently dismal accuracy performance for all tests and the expectation that 

representation o f true class variability was not achieved by these small training sets (Wang et 

al, 2001). Spectral bandwidth was a significant contributor to the accurate classification of 

cultural features and all landscape features combined, but it was not significant in the 

classification o f natural features alone. With increasing spatial resolution and subsequent 

increasing spectral variability within classes (Hay et al, 1996; Aplin et al, 1997), it was 

anticipated that the narrower bandwidth spectral imagery (25nm) would outperform the 

wider bandwidth imagery (70nm) regardless of landscape feature type. Aplin et al (1997) 

explained that within-class variability that is too large may cause spectral overlap in 

landscape cover classes. The original null hypothesis (H0r  accuracy results generated from 

landscape classifications derived from 70 and 25nm spectral bandwidth imagery would be 

equivalent) was accepted for natural landscape features. In comparing pairs of 1 and 4m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2-30

spatial imagery, this finding indicated that 25nm bandwidths were not small enough to 

change the within class spectral variability found from 70nm bandwidths. A review o f the 

transformed divergence matrices for 25 and 70nm bandwidths imagery training sample data 

confirmed that there was little additional separability for the natural landscape classes 

attributable to narrowing the spectral resolution. Transformed divergence is a suggested test 

for the exploratory analysis of selecting appropriate image bands to maximize intra class 

variance (Phinn et al, 2000). A comparative test against imagery acquired with narrower 

bandwidths (lOnm) currently available on hyperspectral sensors platforms could result in a 

review o f this hypothesis.

Spatial pixel size accuracy results were at first surprising. Evaluation o f imagery 

from airborne 1 and 4m spatial pixels was expected to reveal higher cultural feature accuracy 

from lm  data. However, the original null hypothesis (H02 -accuracy results generated for 1 

and 4m spatial pixel size imagery derived landscape classifications would be equivalent) was 

accepted for all and cultural landscape features, but rejected for natural features. The 

stratified random ground plot sampling design did not purposefully locate plots at cultural 

feature edges where the opportunity for finer evaluation in cultural feature accuracy might 

have been pursued. A re-evaluation o f  the spatial contribution o f pixel size to cultural feature 

accuracy would warrant a collection o f  plots at edges near cultural feature edges. From a 

solely visual standpoint, the 1 m imagery was superior to the 4m imagery in cultural 

information display, affirming comparative comments made by Dare and Fraser (2001) about 

1 and 4m image data. Regarding the differences in accuracy of natural features attributable 

to pixel size differences, a clear and consistent separation o f the overall accuracy scores was
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evidenced with 4m data always outperforming the lm  data by an average o f approximately 5 

percent. This finding does support the predictions o f Lillesand and Keifer (1994) and Aplin 

et al (1997), and the implicit suggestion o f Arnold et al (2000) that spatial resolution at too 

fine a scale could actually impact the within class variability to a point where accuracy was 

affected. The present IKONOS imagery with 4m multispectral spatial accuracy and a im  

panchromatic band appears to have captured the preferred spatial dimensionality based on 

these tests.

Phinn et al (2000) were also interested in optimizing spatial resolution, and suggested 

minimizing class variance for all landscape cover classes. The spatial resolution range 

recommended was between 240 and 480 meters, suggesting that certain land covers perform 

better for particular spatial resolutions. Results from this paper agree with Phinn et al 

(2000), where cultural and natural landscape features were separately evaluated and found to 

respond differently to variable pixel size. Individual landscape features found within the 

natural and cultural categories clearly responded differently to variable pixel size. This 

information could prove useful in the future and is therefore recoverable within the 

Appendices for accuracy assessments.

Imagery collected commercially combines spectral and spatial resolution. Imagery 

users are given latitude only to choose the spectral-spatial resolution combination with which 

they wish to work. Selection may come from either satellite or airborne imagery services. 

The airborne multispectral sensing systems will probably be limited by cost to using 

commercially available 25nm bandpass interference filters, or the more standard 70nm
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bandpass filters. An inquiry by the author to vendors o f  bandpass filters revealed a cost- 

prohibitive increase in custom ground bandpass filters. Resolution at I and 4m is available 

now from airborne and satellite. Accordingly, the earlier null hypothesis (Ho3 -accuracy 

results generated for 70nm/4m, 70nm/lm, 25nm/4m, and 25nm/Im resolution imagery 

derived landscape classifications would be equivalent) represented a reasonable comparison 

of imagery choices for today’s user of high-resolution imagery. With the elimination o f the 

point and seed grow-2 training sample methods, there was an acceptance of the null 

hypothesis that cultural landscape feature classifications would be equivalent regardless o f 

image combination, and a partial rejection of the hypothesis for image combination 

equivalency in class accuracy for all and natural landscape feature classifications. This 

rejection was the result o f  statistically significant differences for all and natural landscape 

features comparing 25nm/4m against 70nm/lm imagery.

How does this relate to image sensors available for today? IKONOS, used here as an 

example of a baseline high-resolution commercial satellite sensor, is generally a 70nm/4m 

(spectral) sensor. Bandwidths vary a little depending on image channel, but the 70nm width 

is a reasonable approximation. This combination o f 70nm/4m was not statistically different 

from the 25nm/lm combination tested in this study. Increasing lm panchromatic spatial 

accuracy with an HSI transform does visibly improve the product (Dare and Fischer, 2001) 

but it may not improve the landscape class accuracy. High-resolution 25nm/lm is 

representative o f the sensing capability of airborne acquisition systems. In fact, resolution 

fidelity greater than lm  are easily obtained. However, an absence o f any statistical 

differences in accuracy for the 1 and 4m spatial 25nm imagery raises a question about the
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usefulness o f lm imagery for landscape class characterization at the Anderson II level. Four- 

meter spatial resolution guarantees fewer frames of imagery necessary to cover a study area 

and increases the possibility for coverage o f a larger study area on the ground. For every 

single 4m ground detection spatial resolution pixel acquired, sixteen lm  pixels are needed for 

the higher resolution.

Several training sample methods were tested with regard to their impact on 

classification accuracy. The point and seed grow-2 were poor performers in all conditions. 

Sampling should be representative o f  the variability in the class (Magurran, 1988) and these 

training sample methods clearly under-represented class variability. Polygon training 

methods, if  collected as advised by Jensen (1996), should attempt to capture the variability o f 

the landscape to be classified. Significant environmental factors can control signature 

extension and Jensen (1996) recommends identification o f these variables. This 

recommendation may not be easily achievable. There will always be subjectivity in the 

outlining o f training sample class polygons as applied by different imagery analysts.

Accuracy o f landscape classifications depends critically on the size and quality o f the 

training set and class clusters that overlap in spectral feature space will result in misleading 

classifications (Hubert-Moy et al, 2001). It follows then that an objective, replicable method 

o f training sample selection would be preferred. This is precisely what the seed grow 

technique accomplishes using a predetermined starting point with known class (perhaps by 

field-based GPS classification). This technique allows the starting point "seed" to grow 

algorithmically out to a user defined euclidean distance. Only pixels that are statistically 

similar in multivariate feature space and within a user-defined distance threshold are included
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in the final training sample. This technique was successful in this study and is recommended 

for follow-on work.

Conclusion

Four multi-spectral imagery combinations (25nm/lm, 25nm/4m, 70nm/lm, 

70nm/4m), each image combination employing 6 distinct training sample methods for a total 

o f 24 combinations, were processed with remote sensing software to compile 24 map 

classification products containing thirteen unique land cover landscape themes over a mixed 

land cover coastal study site. There were a total o f 8 natural features (oak and American 

holly forest, mixed forest, loblolly forest, maintained grass, beach grass, ocean, sand, clay 

soil) and 5 cultural man-made features (asphalt, concrete, gray shingle roof building, brown 

shingle roof building, and shoreline rip rap). Each of the 24 map classifications were further 

sub-divided into 3 groups: a) all landscape features, b) natural landscape features, and c) 

cultural landscape features, in essence creating a new total of 72 landscape classifications. 

Accuracy o f each of the 72 classifications was tested with field data, with scores for Kappa, 

users, producers, and overall accuracy reported.

Bandwidth, pixel size, both bandwidth and pixel size, and training sample methods 

were evaluated and compared for each o f the three landscape segmented classification groups 

(all, natural, and cultural). In terms o f  spectral bandwidth performance, landscape 

classifications compiled from sensors with 70nm bandwidth image channels were 

outperformed by imagery from sensors with 25nm bandwidths. "All" and "cultural" 

landscape classification groups were statistically different for 70nm and 25nm accuracy
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results; "Natural" landscape group showed equivalent accuracy results between 70 and 25nm 

bandwidth imagery. Pixel size influenced "natural" landscape feature classifications, where 

4m pixel imagery generated classifications that were better and statistically different than the 

lm  pixel imagery. There was no statistical difference for cultural or all features. Analysis of 

combined bandwidth and pixel size showed that 25nm imagery with 4m spatial resolution 

received the highest Kappa scores for all features, natural features, and cultural features. 

Statistically, however, only classifications from image combination 25nm/4m and 70nm/lm 

were different for natural and cultural features (p-value = 0.04) and natural features (p-value 

= 0.02). Finally, training sample method selection did affect the classification accuracy for 

the studied imagery. Sample methods that selected the fewest pixels as training samples 

were the least effective. These ineffective methods were: point, seed grow-2, and seed 

grow-5 methods. Effective and statistically equivalent methods were: polygon, seed grow- 

15, and seed grow-25.

In all cases, 70nm bandwidth with lm spatial resolution received the lowest Kappa 

scores representing classification accuracy. The lm  spatial pixels showed evidence o f  being 

too small. A 4m pixel contains the equivalent o f sixteen lm  pixels and, accordingly, 

represents the average o f the 16 reflectance values. The benefit of averaging pixels achieved 

by using the 4m pixels was especially evident for the classification of natural features.

Alternative imagery choices to the 25nm/4m imagery were statistically acceptable, 

but produced slightly lower overall accuracy scores. If all landscape themes incorporating 

both cultural and natural features were to be classified, a 70nm/4m image scene provided a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2-36

reasonable alternative data set. For natural landscape themes, the recommended alternative 

image combination was again 70nm/4m imagery. For cultural landscape theme 

classification, the recommended alternative image combination was 25nm /lm  imagery. 

Training sample methods that failed to achieve comparably accurate classification results 

were approaches that minimized the number of sample pixels selected. Point, seed grow-2, 

and seed grow-5, were dismissed as unacceptable training sample methods; seed-15, seed-25, 

and heads-up polygon digitizing were each retained as acceptable solutions. The seed grow 

training sample method was the most objective and replicable.

In conclusion, results o f this study have several implications for resource 

management.

•  First, selection o f an imagery source may directiy affect the accuracy o f any derived land 

cover classification maps. An understanding of the influence o f both spectral and spatial 

resolution components of an image should assist a manager in selection o f an image 

source.

• Second, the narrower bandwidths used in this study are presently available only from 

airborne multispectral imagery and not satellite multispectral imagery. Accurate 

classification of all (natural and cultural features) and cultural features alone was best 

achieved from the narrower 25nm narrower bandwidth imagery.

• Third, imagery with pixels that are 1 m in size, or even smaller, may be too small for 

general land cover type mapping. Accuracy of lm  and 4m cover maps were statistically 

different for the classification o f  natural features, with 4m imagery returning higher
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scores. Four-meter pixel imagery can be created from lm pixel imagery by degrading 

the higher resolution down to a coarser resolution.

• Fourth, the joint contribution o f spectral and spatial resolution was evaluated for four 

image combinations. The results o f their respective landscape cover classifications were 

generally not statistically different at the 95% confidence level. There was a statistical 

difference between the 25nm/4m imagery and the 70nm/lm imagery in the classification 

accuracy o f  all natural and cultural features, and natural features alone. The 25nm/4m 

imagery consistently received the highest Kappa scores for all features, natural features, 

and cultural features.

• Fifth, generation o f a cover classification map from an image source using supervised 

image processing techniques demands the creation of a training sample set. An effective 

number o f  training pixels were acquired using the seed grow-15, seed grow-25, and 

polygon techniques. Ineffective sampling methods were the point, seed grow-2 and seed 

grow-5 techniques.

• Lastly, training sample methods selected will result in varying classification accuracy. 

Transformed divergence scores provide immediate feedback on the training sample 

selection process and the ability to adequately separate landscape features into distinct 

classes. Imagery can be classified twice using different training sample methods, if 

necessary for features to be spectrally classed more effectively using an alternative 

method.

A mapping scenario of multi-scale remote sensing imagery resolution might assist in

accurately classifying a variety o f different landscape types. Coops and Waring (2001)
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considered multi-resolution sources for evaluating forest growth capacity, with Thematic 

Mapper providing the high-resolution information and coarser resolution providing the 

regional scale coverage. At the higher resolutions o f  imagery (1 and 4m), it is equally 

possible that Im data could be acquired as sample transects designed to supplement (and 

train) the complete study acquisition o f the 4m imagery. A future recommendation is to 

compare high-resolution spectral-spatial imagery with coarser resolution imagery in the 

classification of species-level landscape mapping. Species delineation of grass from 

common reed has been demonstrated (Slocum et al, unpublished work) using 25nm/lm 

imagery but results were not compared from image sources such as SPOT or Landsat. While 

this present study has not suggested definitively that higher spectral and spatial resolution are 

necessary for broad category landscape cover mapping, it is anticipated that mapping o f plant 

species-level classifications will benefit from the higher resolution imagery. Identification 

and classification o f natural resources at a species level would increase scientific 

understanding of ecosystems and biodiversity. To manage an environment intelligently, one 

must know as much about that environment as possible. Narrow bandwidth, high spatial 

resolution imagery is a likely source for harnessing that intelligence.
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Table 1. Within-class variability that is too large may cause spectral overlap in landscape 
cover classes. Variability may be the result o f  pixel size, spectral bandwidth, or both. 
Transformed divergence scores (“Divergence Score”) less than or equal to 1950 for any 
classification cover pair (“Cover Pair”) are identified for each spectral -  spatial imagery 
combination (“Image Combination”). All other pairs have a score between 1951 and 2000.

Image Combination Cover Pair Divergence Score
25nm/1m Sand / Concrete 1825
25nm/1m Large stone asphalt /  ocean 1934
25nm/1m Grey shingle roof / concrete 1861
25nm/1m Loblolly pine / hardwood forest 316
25nm/1m Loblolly pine /  unmaintained grass 1927
25nm/1m Hardwood forest / unmaintained grass 1945

25nm/4m Loblolly pine / hardwood forest 465

70nm/1m Loblolly pine / hardwood forest 347
70nm/1m Loblolly pine /  unmaintained grass 1782
70nm/1m Hardwood forest / unmaintained grass 1931

70nm/4m Loblolly pine / hardwood forest 619
70nm/4m Loblolly pine /  unmaintained grass 1942
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Table 2a. Kappa scores, grouped by spectral bandwidths 25 and 70nm, reported for 
classification accuracy of natural AND cultural features. Kappa scores from the 25nm 
imagery indicate greater accuracy. “Pairwise comparison to top score” results represent a 
statistical comparison o f Kappa scores from each “Spectral Combination” compared to the 
Top Score. This comparison determines if  scores are significantly similar with the Top score 
at die 95% confidence level. Scores that are statistically similar (between 0.00 and 1.96) are 
marked by a double asterisk (**). The top 25nm result (25-4-seedl5) compared to the top 
70nm result (70-4-seed25) showed no statistical difference. All remaining 70nm 
combinations were statistically different from the best 25 nm outcome. Spectral 
combination variables represent bandwidth in nanometers-pixel size in meters- and training 
sample methodology.

Natural and Cultural Features

Spectral
Combination

Kappa
Score

Pairwise 
comparison to the 

top score
25-4-seed15 0.57 Top score
25-4-polygon 0.57 0.00**
25-4-seed25 0.56 0.29**
25-1-polygon 0.52 1.44**
25-1-seed25 0.52 1.44**
25-1-seed15 0.5 2.02
25-1-seed5 0.47 2.89
25-4-seed5 0.44 3.75
25-1-seed2 0.42 4.33
25-4-seed2 0.38 5.73
25-4-point 0.32 7.54
25-1 -point 0.30 8.14

70-4-seed25 0.55 0.58**
70-4-polygon 0.49 2.31
70-4-seed15 0.49 2.31
70-1 -polygon 0.47 2.89
70-1-seed15 0.47 2.89
70-1 -seed25 0.45 3.46
70-4-seed5 0.42 4.52
70-1-seed5 0.39 5.43
70-4-seed2 0.36 6.33
70-1-seed2 0.35 6.63
70-4-point 0.29 8.44
70-1-point 0.27 9.05
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Table 2b. Kappa scores, grouped by spectral bandwidths 25 and 70nm, reported for 
classification accuracy o f “natural” features. “Pairwise comparison to top score” results 
represent a statistical comparison o f Kappa scores from each “Spectral Combination” 
compared to the Top Score. This comparison determines if  scores are significantly similar 
with the Top score at the 95% confidence level. Scores that are statistically similar (between 
0.00 and 1.96) are marked by a double asterisk (**). There are no statistical differences with 
any o f the “Spectral combinations” as reported by these Kappa results. Spectral 
combinations are grouped by narrow 25nm bandwidth and wider 70nm bandwidths. Spectral 
combination variables represent bandwidth in nanometers-pixel size in meters- and training 
sample methodology.

Natural Features

Spectral
Combination

Kappa
Score

Pairwise 
comparison to 

top score
25-4-seed2 0.40 Top Score

25-4-seed25 0.40 Top Score
25-4-polygon 0.39 0.24**
25-4-seed 15 0.39 0.24**
70-4-polygon 0.39 0.24**
70-4-seed 15 0.39 0.24**
70-4-seed25 0.39 0.24**

25-4-point 0.38 0.49**
25-4-seed5 0.38 0.47**
70-4-seed2 0.38 0.50**
70-4-seed5 0.37 0.73**
70-4-point 0.35 1.21**

70-1-point 0.40 0.00’ *
70-1-polygon 0.40 0.00**
70-1-seed2 0.40 0.00**

25-1-polygon 0.39 0.24**
25-1-seed 15 0.39 0.24**
25-1 -seed25 0.39 0.24**
70-1-seed25 0.39 0.24**
70-1-seed5 0.39 0.24**
25-1-seed2 0.38 0.47**
25-1-seed 5 0.38 0.49**

70-1-seed 15 0.38 0.47’ *
25-1-point 0.37 0.73**
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Table 2c. Kappa scores, grouped by spectral bandwidths 25 and 70nm, reported for 
classification accuracy of “cultural” features. “Pairwise comparison to top score” results 
represent a statistical comparison o f Kappa scores from each “Spectral Combination” 
compared to the Top Score. This comparison determines if scores are significantly similar 
with the Top score at the 95% confidence level. Scores that are statistically similar (between 
0.00 and 1.96) are marked by a double asterisk (**). The spectral results suggest the 25nm 
imagery provides greater classification accuracy. The top 25nm result (25-4-polygon) is 
statistically similar to the top three 70nm result but different from the remaining nine 
combinations o f 70nm images. The narrower 25nm bandwidth provided seven possible 
image combination/training sample solutions that were equally effective. Spectral 
combination variables represent bandwidth in nanometers-pixel size in meters- and training 
sample methodology.

Cultural Features

Spectral
combination

Kappa
Score

Pairwise 
comparison to 

top score
25-4-polygon 0.77 Top score
25-4-seed 15 0.76 0.13**
25-4-seed25 0.72 0.60**
25-1-seed25 0.71 0.72**
25-1-polygon 0.68 1.16**
25-1-seed 5 0.64 1.58**

25-1-seed 15 0.63 1.67**
25~4-seed5 0.44 3.69
25-4-seed2 0.4 4.52
25-1 -seed2 0.36 5.38
25-1-point 0.3 6.65
25-4-point 0.27 7.07

70-4-seed 15 0.70 0.84**
70-1-seed 15 0.63 1.67**
70-4-seed25 0.61 1.91**
70-4-polygon 0.51 2.90
70-1-seed5 0.49 3.35

70-1-seed25 0.48 3.24
70-1 -polygon 0.46 5.24
70-4-seed2 0.33 5.83
70-4-seed5 0.32 6.07
70-1-seed2 0.32 5.46
70-1-point 0.25 6.67
70-4-point 0.17 10.60
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Table 3. Overall accuracy assessment results, grouped by spectral bandwidths 25 and 70nm, 
reported for classification accuracy o f natural and cultural, natural, and cultural features. 
Training Sample Method variables represent pixel size in meters- and training sample 
method.

Training
Sample
Method

Natural and 
Cultural Natural Cultural

25nm 70nm 25nm 70nm 25nm 70nm
1 m/point 37.70 35.00 45.40 36.40 44.00 50.00

1 m/polygon 57.60 52.60 59.70 57.30 77.90 64.40
1m/seed15 55.83 52.96 58.73 55.17 73.68 75.00
1 m/seed2 48.76 41.87 54.67 45.07 52.08 53.76

1 m/seed25 57.74 51.05 58.68 54.88 80.61 65.56
1m/seed5 53.35 45.32 54.62 47.45 75.00 64.52
4m/point 39.20 37.70 45.30 47.90 46.00 27.60

4m/polygon 61.80 54.50 64.00 62.00 84.40 63.40
4m/seed15 61.95 55.64 65.36 58.82 84.88 80.26
4m/seed2 44.83 43.40 49.33 50.13 55.56 45.56

4m/seed25 60.54 60.42 63.35 64.92 81.32 74.73
4m/seed5 50.86 48.95 58.01 58.18 63.22 43.33

Table 4. Analysis of variance (ANOVA) results, comparing overall classification accuracy 
scores grouped by spectral bandwidths 25- and 70nm (found in Table 3), reported for natural 
AND cultural, natural and cultural features. A 95% confidence interval was used to 
compute the F-critical value. F-statistics less than the F-critical value, or p-values greater 
than 0.05, were not significantly different, suggesting bandwidth did not make a statistical 
difference. Statistical differences in overall accuracy scores were observed for both natural 
and cultural features and cultural features after the point and seed-grow-2 training sample 
methods were removed from the sample testing. These statistically significant values are 
marked by double asterisks (**). Degrees of freedom are noted by d.f.

Features F-statistic F-critical p-value d.f.
Classified

NATURAL and 
CULTURAL
NATURAL 1.13 4.3 0.3 23

1.65 4.3 0.21 23

1.13 4.3 0.3 23
CULTURAL 2.17 4.3 0.15 23

Minus “point" and 
“seed grow 2”

NATURAL AND -  no** a  a  n c\a o * *  1 ^
CUTURAL 5 0 3  4 6  0 0 4 2  15
NATURAL 1.75 4.6 0.21 15

CULTURAL 5.71** 4.6 0.031**_____________ 15
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Table 5a. Kappa scores, grouped by spatial pixel sizes lm  and 4m, as reported for 
classification accuracy of natural and cultural features. “Pairwise comparison to top score” 
results represent a statistical comparison o f Kappa scores from each “Spatial Combination” 
compared to the Top Score. This comparison determines if  scores are significantly similar 
with the Top score at the 95% confidence level. Scores that are statistically similar (between 
0.00 and 1.96) are marked by a double asterisk (**). The top Kappa score is from a 4m 
spatial image (25nm/4m-seedl5). There is no statistical difference with the top two finishing 
lm  imagery, as indicated by a test statistic of 1.44, but all others are different. Kappa results 
suggest that the 4m spatial imagery did a better job at classification o f “all” features over the 
Fort Story study area. Spatial combinations variables represent bandwidth in nanometers- 
pixel size in meters- and training sample methodology.

Natural and Cultural

Spatial
Combination Kappa Score

Pairwise 
comparison 
to top score

25-4-seed 15 0.57 Top Score
25-4-polygon 0.57 Top Score
25-4-seed25 0.56 0.29**
70-4-seed25 0.55 0.58**
70-4-polygon 0.49 2.31
70-4-seed 15 0.49 2.31
25-4-seed5 0.44 3.75
70-4-seed5 0.42 4.52
25-4-seed2 0.38 5.73
70-4-seed2 0.36 6.33
25-4-point 0.32 7.54
70-4-point 0.29 8.44

25-1 -polygon 0.52 1.44**
25-1 -seed25 0.52 1.44**
25-1 -seed 15 0.5 2.02
25-1-seed5 0.47 2.89

70-1 -polygon 0.47 2.89
70-1-seed15 0.47 2.89
70-1-seed25 0.45 3.46
25-1 -seed2 0.42 4.33
70-1 -seed5 0.39 5.43
70-1 -seed2 0.35 6.63
25-1 -point 0.30 8.14
70-1 -point 0.27 9.05
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Table 5b. Kappa scores, grouped by spatial pixel sizes lm  and 4m, as reported for 
classification accuracy o f natural features. “Pairwise comparison to top score” results 
represent a statistical comparison o f Kappa scores from each “Spatial Combination” 
compared to the Top Score. This comparison determines if  scores are significantly similar 
with the Top score at the 95% confidence level. Scores that are statistically similar (between 
0.00 and 1.96) are marked by a double asterisk (**). The top Kappa scores are from 4m and 
lm spatial images. There is no statistical difference with any o f  the possible spatial 
combinations o f  imagery as reported by these Kappa results. Spatial combinations variables 
represent bandwidth in nanometers-pixel size in meters- and training sample methodology.

Natural Features

Spatial
Combination Kappa

Pairwise 
comparison 
to top score

25-4-seed2 0.40 Top Score
25-4-seed25 0.40 Top Score
25-4-polygon 0.39 0.24**
25-4-seed 15 0.39 0.24**
70-4-polygon 0.39 0.24**
70-4-seed 15 0.39 0.24**
70-4-seed25 0.39 0.24**

25-4-point 0.38 0.49**
25-4-seed 5 0.38 0.47**
70-4-seed2 0.38 0.50**
70-4-seed5 0.37 0.73**
70-4-point 0.35 1.21**

70-1-point 0.40 Top Score
70-1-polygon 0.40 Top Score
70-1-seed2 0.40 Top Score

25-1-polygon 0.39 0.24**
25-1-seed 15 0.39 0.24**
25-1-seed25 0.39 0.24**
70-1 -seed25 0.39 0.24**
70-1-seed5 0.39 0.24**
25-1 -seed2 0.38 0.47**
25-1 -seed5 0.38 0.49**
70-1-seed 15 0.38 0.47**

25-1-point 0.37 0.73**
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Table 5c. Kappa scores, grouped by spatial pixel sizes lm and 4m, as reported for 
classification accuracy o f “cultural” features. “Pairwise comparison to top score” results 
represent a statistical comparison of Kappa scores from each “Spatial Combination” 
compared to the Top Score. This comparison determines if scores are significantly similar 
with the Top score at the 95% confidence level. Scores that are statistically similar (between 
0.00 and 1.96) are marked by a double asterisk (**). The top Kappa scores is from a 4m 
spatial image (25nm/4m-polygon training sample method). There is no statistical difference 
with the top five finishing lm  imagery as indicated by a test statistic of 1.67. The top four 
finishing 4m imagery are all statistically similar (test statistics 0.00 to 0.84 with 1.96 as the 
defining critical threshold). Kappa results suggest that the 4m spatial imagery did a better 
job at classification o f “natural” features over the Fort Story study area. Spatial 
combinations variables represent bandwidth in nanometers-pixel size in meters- and training 
sample methodology.

Cultural Features

Spatial
combination Kappa

Pairwise 
comparison 
to top score

25-4-polygon 0.77 Top Score
25-4-seed 15 0.76 0.13**
25-4-seed25 0.72 0.60**
70-4-seed 15 0.70 0.84**
70-4-seed25 0.61 1.91
70-4-polygon 0.51 2.91
25-4-seed5 0.44 3.69
25-4-seed2 0.40 4.52
70-4-seed2 0.33 5.83
70-4-seed5 0.32 6.07
25-4-point 0.27 7.07
70-4-point 0.17 10.61

25-1-seed25 0.71 0.72**
25-1-polygon 0.68 1.16**
25-1-seed5 0.64 1.59**

25-1-seed15 0.63 1.67**
70-1-seed15 0.63 1.67**
70-1-seed5 0.49 3.35

70-1-seed25 0.48 3.24
70-1-polygon 0.46 5.24
25-1-seed2 0.36 5.38
70-1-seed2 0.32 5.46
25-1-point 0.30 6.65
70-1-point 0.25 6.71
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Table 6. Overall accuracy assessment results, grouped by spatial pixel sizes lm  and 4m, as 
reported for natural and cultural, natural, and cultural features.

Training
Sample
Method

Natural and 
Cultural Natural Cultural

1m 4m 1m 4m 1m 4m
25nm/point 37.70 39.20 45.4 45.3 44.0 46.0

25nm/polygon 57.60 61.80 59.7 64.0 77.9 84.4
25nm/seed15 55.83 61.95 58.73 65.36 73.68 84.88
25nm/seed2 48.76 44.83 54.67 49.33 52.08 55.56

25nm/seed25 57.74 60.54 58.68 63.35 80.61 81.32
25nm/seed5 53.35 50.86 54.62 58.01 75 63.22
70nm/point 35.00 37.70 36.4 47.9 50.0 27.6

70nm/polygon 52.60 54.50 57.3 62.0 64.4 63.4
70nm/seed15 52.96 55.64 55.17 58.82 75 80.26
70nm/seed2 41.87 43.40 45.07 50.13 53.76 45.56

70nm/seed25 51.05 60.42 54.88 64.92 65.56 74.73

Table 7. Analysis o f variance (ANOVA) results, comparing overall accuracy scores grouped 
by spatial pixel sizes 1- and 4m (found in Table 6), reported for classification o f natural and 
cultural, natural and cultural features. A 95% confidence interval was used to compute the 
F-critical value. F-statistics less than the F-critical value, or p-values greater than 0.05, were 
not significantly different, suggesting pixel size did not make a statistical difference. 
Statistical differences in overall accuracy scores were observed for natural features after the 
point and seed-grow-2 training sample methods were removed from the sample testing. 
Statistically significant values are noted by double asterisks (**). Degrees o f freedom are 
noted by d.f.

Features
Classified

F-stat F-critical p-value d.f.

Natural and 
Cultural 

NATURAL 
CULTURAL

0.55

2.82
0.11

4.3

4.3
4.3

0.47

0.11
0.74

23

23
23

Minus “point” and 
“seed grow 2" 

training methods 
Natural and 

Cultural 
NATURAL 

CULTURAL

2.35

11.73**
0.0006

4.6

4.6
4.6

0.15

0.004**
0.98

15

15
15
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Table 8a. Kappa scores, grouped by spectral - spatial combination, reported for classification 
accuracy o f natural and cultural features. “Pairwise comparison to top score” results 
represent a statistical comparison o f Kappa scores from each “Spatial Combination” 
compared to the Top Score. This comparison determines if  scores are significantly similar 
with the Top score at the 95% confidence level. Scores that are statistically similar (between 
0.00 and 1.96) are marked by a double asterisk (**). Spectral -  spatial combination variables 
identify the sample image bandwidth (25nm or 70nm), pixel size ( lm  or 4m), and training 
samples method. The top Kappa scores are from 25nm/4m- seed 15 and 25nm/4m-polygon 
imagery. No scores from 70nm/lm imagery are statistically close to these scores. Spectral - 
spatial combination variables represent bandwidth in nanometers-pixel size in meters- and 
training sample methodology.

Natural and Cultural Features

Spectral - 
Spatial 

Combination
Kappa
Score

Pairwise 
comparison 

to top 
score

25-1-seed25 0.52 1.44**
25-1 -polygon 0.52 1.44**
25-1-seed 15 0.5 2.02
25-1-seed5 0.47 2.89
25-1-seed2 0.42 4.33
25-1 -point 0.30 8.14

25-4-seed 15 0.57 Top Score
25-4-polygon 0.57 Top Score
25-4-seed25 0.56 0.29*
25-4-seed5 0.44 3.75
25-4-seed2 0.38 5.73
25-4-point 0.32 7.54

70-1-seed 15 0.47 2.89
70-1-polygon 0.47 2.89
70-1-seed25 0.45 3.46
70-1-seed5 0.39 5.43
70-1-seed2 0.35 6.63
70-1-point 0.27 9.05

70-4-seed25 0.55 0.58**
70-4-seed 15 0.49 2.31
70-4-polygon 0.49 2.31
70-4-seed5 0.42 4.52
70-4-seed2 0.36 6.33
70-4-point 0.29 8.44
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Table 8b. Kappa scores, grouped by spectral - spatial combination, reported for “natural” 
features. “Pairwise comparison to top score” results represent a statistical comparison of 
Kappa scores from each “Spatial Combination” compared to the Top Score. This 
comparison determines if  scores are significantly similar with the Top score at the 95% 
confidence level. Scores that are statistically similar (between 0.00 and 1.96) are marked by 
a double asterisk (**). There is no statistical difference with any spectra-spatial-training 
sample combination as reported by these Kappa results. Top scores, although not by much, 
come from the 25nm/4m and 70nm/4 imagery combinations. Spectral - spatial combination 
variables represent bandwidth in nanometers-pixel size in meters- and training sample 
methodology.

Natural Features
Spectral - 

Spatial 
Combination

Kappa
Score

Pairwise 
comparison to 

top score
25-1-point 0.37 0.73**

25-1 -polygon 0.39 0.24**
25-1-seed 15 0.39 0.24**
25-1-seed2 0.38 0.47**

25-1-seed25 0.39 0.24**
25-1-seed 5 0.38 0.49**

25-4-point 0.38 0.49**
25-4-polygon 0.39 0.24**
25-4-seed 15 0.39 0.24**
25-4-seed2 0.40 Top Score

25-4-seed25 0.40 Top Score
25-4-seed5 0.38 0.47**

70-1-point 0.40 Top Score
70-1-polygon 0.40 Top Score
70-1-seed 15 0.38 0.47**
70-1-seed2 0.40 Top Score

70-1-seed25 0.39 0.24**
70-1-seed5 0.39 0.24**

70-4-point 0.35 1.21**
70-4-polygon 0.39 0.24**
70-4-seed 15 0.39 0.24**
70-4-seed2 0.38 0.50**

70-4-seed25 0.39 0.24**
70-4-seed5 0.37 0.73**
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Table 8c. Kappa score results, grouped by spectral - spatial combination, as reported for 
“cultural” features. “Pairwise comparison to top score” results represent a statistical 
comparison of Kappa scores from each “Spatial Combination” compared to the Top Score. 
This comparison determines if  scores are significantly similar with the Top score at the 95% 
confidence level. Scores that are statistically similar (between 0.00 and 1.96) are marked by 
a double asterisk (**). The top Kappa score is from the 25nm-4m-polygon imagery. Each 
spectral -  spatial combination has at least one training sample method combination that is 
statistically equivalent to the top score. The 25nm/lm combination reported 4 scores that 
were statistically equivalent although each o f these scores is lower than the top three 
25nm/4m scores. Spectral - spatial combination variables represent bandwidth in 
nanometers, pixel size in meters, and training sample methodology.

Cultural Features
Spectral — 

Spatial 
combination

Kappa
Score

Pairwise 
comparison 
to top score

25-1-seed25 0.71 0.72**
25-1-polygon 0.68 1.16**
25-1 -seed5 0.64 1.59**

25-1-seed 15 0.63 1.67**
25-1 -seed2 0.36 5.38
25-1-point 0.3 6.65

25-4-polygon 0.77 Top Score
25-4-seed 15 0.76 0.13**
25-4-seed25 0.72 0.60**
25-4-seed5 0.44 3.69
25-4-seed2 0.4 4.52
25-4-point 0.27 7.07

70-1-seed 15 0.63 1.67**
70-1 -seed5 0.49 3.35

70-1-seed25 0.48 3.24
70-1-polygon 0.46 5.24
70-1 -seed2 0.32 5.46
70-1-point 0.25 6.71

70-4-seed 15 0.70 0.84**
70-4-seed25 0.61 1.91
70-4-polygon 0.51 2.91
70-4-seed2 0.33 5.83
70-4-seed5 0.32 6.07
70-4-point 0.17 10.61
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Tables 9a-c. Overall accuracy assessment scores, grouped by spectral -  spatial image 
combination, as reported for (a) natural and cultural features, (b) natural features, and (c) 
cultural features.

(9a) Natural and cultural features
Training
Sample
Method 25nm/1m EEcinCM EEcon 70nm/4m
Point 37.70 39.20 35.00 37.70
Polygon 57.60 61.80 52.60 54.50
Seed-15 55.83 61.95 52.96 55.64
Seed-2 48.76 44.83 41.87 43.40
Seed-25 57.74 60.54 51.05 60.42
Seed-5 53.35 50.86 45.32 48.95

(9b) Natural features
Training
Sample 25nm/1m 25nm/4m 70nm/1m ETtEco

Method
Point 45.40 45.30 36.40 47.90

Polygon 59.70 64.00 57.30 62.00
Seed-15 58.73 65.36 55.17 58.82
Seed-2 54.67 49.33 45.07 50.13

Seed-25 58.68 63.35 54.88 64.92
Seed-5 54.62 58.01 47.45 58.18

(9c) Cultural features
Training
Sample
Method 25nm/1m 25nm/4m 70nm/1m EEco1".

Point 44.00 46.00 50.00 27.60
Polygon 77.90 84.40 64.40 63.40
Seed-15 73.68 84.88 75.00 80.26
Seed-2 52.08 55.56 53.76 45.56
Seed-25 80.61 81.32 65.56 74.73
Seed-5 75.00 63.22 64.52 43.33
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Table 10. Analysis o f  variance (ANOVA) results, comparing overall accuracy scores, 
grouped by a spectral and spatial combination (found in Table 9a-c), reported for 
classification o f natural and cultural, natural and cultural features. A 95% confidence 
interval was used to compute the F-critical value. F-statistics less than the F-critical value, or 
p-values greater than 0.05, were not significantly different, suggesting pixel size did not 
make a statistical difference. Statistical differences in overall accuracy scores were observed 
for natural and cultural, and natural features, after the point and seed-grow-2 training sample 
methods were removed from the sample testing. These statistically significant values are 
marked by double asterisks (**). The differences were between image combination 
25nm/4m and 70nm /lm  in both cases. Degrees o f  freedom are denoted by d.f.

Feature
Classified Combination F-stat F-critical p-value d.f.
Natural and 

Cultural 25nm/4m & 70nm/1m 1.86 4.96 0.20 1 1

NATURAL 25nm/4m & 70nm/1m 2.99 4.96 0.11 1 1

CULTURAL 25nm/4m & 70nm/4m 1.56 4.96 0.24 1 1

Minus “point” 
and “seed 

grow 2 
training 

Natural and 
Cultural 25nm/4m & 70nm/1m 6.75** 5.99 0.04** 7

Natural and 
Cultural 25nm/4m & 70nm/4m 1.21 5.99 0.31 7

Natural and 
Cultural 25nm/4m & 25nm/1 m 0.87 5.99 0.39 7

NATURAL 25nm/4m & 70nm/1m 11.15** 5.99 0.02** 7
NATURAL 25nm/4m & 70nm/4m 0.58 5.99 0.48 7
NATURAL 25nm/4m & 25nm/1m 5.82 5.99 0.05 7

CULTURAL 25nm/4m & 70nm/1 m 3.73 5.99 0.10 7
CULTURAL 25nm/4m & 70nm/4m 1.82 5.99 0.22 7
CULTURAL 25nm/4m & 25nm/1 m 0.10 5.99 0.77 7
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Table 11. Summary o f overall Kappa ranking, grouped by spectral — spatial combination, 
reported for natural and cultural, natural, and cultural features. The place order (first, second, 
third, or fourth) was determined by rank ordering all Kappa scores and assigning a rank o f 1 
to the highest Kappa score and 24 to the lowest Kappa score. Lowest cumulative total within 
each spectral -  spatial combination determined the placement (first, second, third, or fourth 
place). The best training sample finish for each spectral- spatial combination is also reported 
as “top position” and is supporting evidence to the place ordering finishes. Combination 
25nm/4m was consistently first in place and position for all possible feature classifications. 
Conversely, combination 70nm /lm  was consistently last for all “place” finishes.

Spectral -  
Spatial 

Combination

Natural
&

cultural
features

Natural
&

cultural
features

Natural
features

Natural
features

Cultural
features

Cultural
features

Overall
Performance

25nm/lm

Place
3rd

Top
Position

5th

Place
3rd

Top
Position

6th

Place
2nd

Top
Position

4th
25nm/4m 1st 1st 1st 1st 1st 1st BEST
70nm/lm 4th 11th 4th 12th 4th 8th WORST
70nm/4m 2nd 4th 2nd 2nd 3 rd 5th
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Table 12a- Kappa scores for 6 types o f training sample methods are presented. These scores 
were computed from a classification o f both natural and cultural features. “Kappa Z-score to 
top score” results represent a statistical pairwise comparison o f  Kappa scores from each 
training sample method to the Top Score(s). This comparison determines if  the scores are 
significantly similar at the 95% confidence level. Scores that are statistically similar 
(between 0.00 and 1.96 in the Kappa Z-score-to-top-score) are marked by a double asterisk 
(**). Scores marked with asterisks were attained from training sample methods that would 
provide the most accuracte classification(s) from the particular image combination selected 
(25nm/lm, 25nm/4m, 70nm/lm, and 70nm/4m).

Natural and Cultural Features

Training
Sample
Method

Kappa
Score

25nm
1m

Pair
wise 

to top 
score

Kappa
Score

25nm
4m

Pair - 
wise to 

top 
score

Kappa
Score

70nm
1m

Pair
wise to 

top 
score

Kappa
Score

70nm
4m

Pair
wise to 

top 
score

Polygon 
Method 

Seed Grow-25 
Method

0.52**

0.52**

1.44

1.44

0.57**

0.56**

Top
Score

0.29

0.47

0.45

2.89

3.46

0.49

0.55**

2.31

0.58

Seed Grow-15 
Method 

Seed Grow-5 
Method

0.50

0.47

2.02

2.89

0.57**

0.44

Top
Score

3.75

0.47

0.39

2.89

5.43

0.49

0.42

2.31

4.52

Seed Grow-2 
Method 0.42 4.33 0.38 5.73 0.35 6.63 0.36 6.33

Point
Method 0.30 8.14 0.32 7.54 0.27 9.05 0.29 8.44
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Table 12b- Kappa scores for 6 types of training sample methods are presented. These 
scores were computed from a classification o f natural features. “Kappa Z-score to top 
score” results represent a statistical pairwise comparison o f Kappa scores from each 
training sample method to the Top Score(s). This comparison determines if  the scores 
are significantly similar at the 95% confidence level. Scores that are statistically similar 
(between 0.00 and 1.96 in the Pairwise-to-top-score) are marked by a double asterisk 
(**). Scores marked with asterisks were attained from training sample methods that 
would provide the most accurate classification(s) from the particular image combination 
selected (25nm/lm, 25nm/4m, 70nm/lm, and 70nm/4m).

Natural Features

Training
Sample
Method

Kappa
Score

25nm
1m

Pair
wise 

to top 
score

Kappa
Score

25nm
4m

Pair
wise to 

top 
score

Kappa
Score

70nm
1m

Pair
wise to 

top 
score

Kappa
Score

70nm
4m

Pair
wise to 

top 
score

Polygon 
Method 

Seed G row-25 
Method 

Seed Grow-15 
Method

0.39**

0.39**

0.39**

0.24

0.24

0.24

0.39**

0.40**

0.39**

0.24

Top
Score

0.24

0.40**

0.39**

0.38*’

Top
Score

0.24

0.47

0.39**

0.39**

0.39**

0.24

0.24

0.24

Seed Grow-5 
Method 0.38** 0.47 0.38** 0.47 0.39** 0.24 0.37** 0.70

Seed Grow-2 
Method 
Point 

Method

0.38**

0.37**

0.47

0.70

0.40**

0.38**

Top
Score

0.47

0.40**

0.40**

Top
Score
Top

Score

0.38**

0.35**

0.47

1.18
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Table 12c- Kappa scores for 6 types o f training sample methods are presented. These 
scores were computed from a classification o f cultural features. “Kappa Z-score to top 
score” results represent a statistical pairwise comparison o f Kappa scores from each 
training sample method to the Top Score(s). This comparison determines if  the scores 
are significantly similar at the 95% confidence level. Scores that are statistically similar 
(between 0.00 and 1.96 in the Pairwise-to-top-score) are marked by a double asterisk 
(**). Scores marked with asterisks were attained from training sample methods that 
would provide the most accurate classification(s) from the particular image combination 
selected (25nm/lm, 25nm/4m, 70nm/lm, and 70nm/4m).

Cultural Features __________

Training
Sample
Method

Kappa
Score

25nm
1m

Pair
wise to 

top 
score

Kappa
Score

25nm
4m

Pair
wise to 

top 
score

Kappa
Score

70nm
1m

Pair
wise to 

top 
score

Kappa
Score

70nm
4m

Pair
wise tc 

top 
score

0.68** 1.03 0.76** Top
Score 0.46 5.07 0.51 2.80

0.71** 0.60 0.72** 0.48 0.48 3.13 0.61** 1.79

0.63** 1.55 0.76** Top
Score 0.63** 1.55 0.70** 0.72

0.64** 1.47 0.44 3.58 0.49 3.23 0.32 5.93

0.36 5.25 0.40 4.40 0.32 5.34 0.33 5.70

0.30 6.51 0.27 6.93 0.25 6.58 0.17 10.43

Polygon 
Method 

Seed Grow-25 
Method 

Seed Grow-15 
Method 

Seed Grow-5 
Method 

Seed Grow-2 
Method 
Point 

Method
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Table 13a. Overall accuracy scores grouped by six training sample methods, reported for
the classification o f  natural and cultural features.

Natural and Cultural Features
Spectral -  

Spatial 
Combination

Polygon Seed
Grow-25

Seed 
G row-15

Seed 
Grow-5

Seed 
Grow-2 Point

25/1 57.60 57.74 61.95 53.35 48.76 37.70
25/4 61.80 60.54 55.83 50.86 44.83 39.20
70/1 52.60 51.05 52.96 45.32 41.87 35.00
70/4 54.50 60.42 55.64 48.95 43.40 37.70

Table 13b. Analysis o f variance (ANOVA) o f  overall accuracy scores, grouped by 
training sample methods, as determined from the classification o f natural and cultural 
features (found in Table 13a). A 95% confidence interval was used to compute the F- 
critical value. F-statistics less than the F-critical value, or p-values greater than 0.05, 
were not significantly different, suggesting pixel size did not make a statistical difference. 
Statistical differences in overall accuracy scores were observed between seed grow 5, 
seed grow 2 and point training sample methods and training sample methods: polygon, 
seed grow 25, and seed grow 15. All statistically significant values are noted in the table 
below. Degrees o f  freedom are denoted by d.f.

Natural and Cultural Features
Training Sample 

Pair ANOVA F-Stat p-Value d.f.
Polygon and Point 78.89 0.0001 1.6
Polygon and Seed 

G row-2 23.02 0.003 1.6
Polygon and Seed 

G row-5 7.62 0.0328 1.6
Seed Grow-25 and 

Point 32.95 0.0012 1.6
Seed Grow-25 and 

Seed G row-2 13.45 0.0105 1.6
Seed Grow-25 and 

Seed G row-5 6.58 0.0426 1.6
Seed Grow-15 and 

Point 85.39 0.0000 1.6
Seed Grow-15 and 

Seed Grow-2 24.33 0.0026 1.6
Seed Grow-15 and 

Seed Grow-5 7.86 0.0310 1.6
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Table 14a. Overall accuracy scores grouped by six training sample methods, reported for
the classification o f  natural features.

Natural Features
Spectral — 

Spatial 
Combination

Polygon Seed
Grow-25

Seed 
Grow-15

Seed 
G row-5

Seed 
Grow-2 Point

25/1 59.70 58.68 58.73 54.62 54.67 45.40
25/4 64.00 63.35 65.36 58.01 49.33 45.30
70/1 57.30 54.88 55.17 47.45 45.07 36.40
70/4 64.92 62.00 58.82 58.18 50.13 47.90

Table 14b. Analysis of variance (ANOVA) o f overall accuracy scores, grouped by 
training sample methods, as determined from the classification o f natural features (found 
in Table 14a). A 95% confidence interval was used to compute the F-critical value. F- 
statistics less than the F-critical value, or p-values greater than 0.05, were not 
significantly different, suggesting pixel size did not make a statistical difference. 
Statistical differences in overall accuracy scores were observed between seed grow 2 and 
point training sample methods and training sample methods: polygon, seed grow 25, and 
seed grow 15. All statistically significant values are noted in the table below. Degrees o f 
freedom are denoted by d.f.

Natural Features
Training 

Sample Pair 
ANOVA

F-Stat p-Value d.f.

Polygon and 
Point 32.75 0.0047 1.6

Polygon and 
Seed G row-2 19.20 0.0012 1.6

Seed Grow-25 
and Point 25.69 0.0023 1.6

Seed Grow-25 
and Seed 
G row-2

13.24 0.0108 1.6

Seed Grow-15 
and Point 22.87 0.0031 1.6

Seed Grow-15 
and Seed 

G row-2
11.27 0.0153 1.6
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Table 15a. Overall accuracy scores grouped by six training sample methods, reported for
the classification o f  natural features.

Cultural Features
Spectral — 

Spatial 
Combination

Polygon Seed
Grow-25

Seed
Grow-15

Seed 
G row-5

Seed 
G row-2 Point

25/1 77.90 80.61 73.68 75.00 52.08 44.00
25/4 84.40 81.32 84.88 63.22 55.56 46.00
70/1 64.40 65.56 75.00 64.52 53.76 50.00
70/4 63.40 74.73 80.26 43.33 45.56 27.60

Table 15b. Analysis o f variance (ANOVA) of overall accuracy scores, grouped by 
training sample methods, as determined from the classification o f  cultural features (found 
in Table 15a). A 95% confidence interval was used to compute the F-critical value. F- 
statistics less than the F-critical value, or p-values greater than 0.05, were not 
significantly different, suggesting pixel size did not make a statistical difference. 
Statistical differences in overall accuracy scores were observed between seed grow 2 and 
point training sample methods and training sample methods: polygon, seed grow 25, and 
seed grow 15. All statistically significant values are noted in the table below. Degrees of 
freedom are denoted by d.f.

Cultural Features
Training 

Sample Pair 
ANOVA

F-Stat p-Value d.f.

Polygon and 
Point 18.44 0.0051 1.6

Polygon and 
Seed G row-2 13.78 0.0010 1.6

Seed Grow-25 
and Point 30.16 0.0015 1.6

Seed Grow-25 
and Seed 

G row-2
31.46 0.0014 1.6

Seed Grow-15 
and Point 43.27 0.0006 1.6

Seed Grow-15 
and Seed 

G row-2
62.85 0.0002 1.6
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Figure 1. Study site map of Fort Story, Virginia, USA, a small joint services military 

installation situated along the coast at the intersection o f the Chesapeake Bay and Atlantic 

Ocean. This prominent cape location provides a safe harbor for endangered flora and fauna 

and is an example o f tenuous competing coastal land uses. Fort Story is a mixed land-use 

land-cover installation. The study site selected was approximately 400 by 500 meters in size 

and contained all landscape classes found at the fort except forested wetlands (sand, 

maintained grass, clay soil, loblolly pine forest, hardwood forest, mixed forest, beach grass, 

ocean, asphalt pavement, rip rap shoreline, concrete pavement, and variable roofing 

material). Complexity of cultural and natural features found at this site provided a suitable 

challenge for comparing variable combinations o f  spectral bandwidth, spatial pixel size, and 

training sample method combinations.
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Figures 2a-c. Line plots depicting overall accuracy o f each image combination by spectral 

bandwidth 70nm or 25 nm, reported for (a) all terrain features (natural and cultural), (b) 

natural features, and (c) cultural features. Imagery combinations plotted along the x-axis 

represent 6 training sample methods tested for lm  and 6 training sample methods tested for 

4m images, totaling 12 images. Overall accuracy scores (%) for classification were sorted 

and plotted from highest to lowest to illustrate score differences attributable to spectral 

bandwidth contribution.
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Figures 3a-c. Line plots depicting overall accuracy o f each image combination by spatial 

pixel size 1-meter or 4-meter, reported for (a) all terrain features (natural and cultural), (b) 

natural features, and (c) cultural features. Imagery combinations plotted along the x-axis 

represent 6 training sample methods tested for 25nm and 6 training sample methods tested 

for 4m images, totaling 12 images. Overall accuracy scores (%) for classification were 

sorted and plotted from highest to lowest to illustrate score differences attributable to spatial 

pixel size contribution.
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Figures 4a-c. Line plots depicting overall accuracy o f  each image combination o f spectral 

bandwidth and spatial pixel size, reported for (a) all terrain features (natural and cultural), (b) 

natural features, and (c) cultural features. Six training sample methods are plotted along the 

x-axis with the overall accuracy scores (%) for classification sorted and plotted from highest 

to lowest to illustrate score differences attributable to the combination o f spectral - spatial 

resolution. Combination 70nm/lm is consistently lowest.
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Figures 5a-c. Line plots depicting overall accuracy o f training sample method, reported for 

(a) all terrain features (natural and cultural), (b) natural features, and (c) cultural features. 

Four imagery combinations (25nm/lm, 25nm/4m, 70nm/lm, 70nm/4m) are plotted along the 

x-axis with the overall accuracy scores (%) for classification sorted and plotted from highest 

to lowest to illustrate score differences attributable to the training sample method selected. 

Three methods: point, seed grow2, and seed grow5, had consistently poorest accuracy results 

regardless o f features to be classified. Seed grow is a user-defined euclidean distance method 

that attempts to mimic a starting pixel statistics, polygon is a heads-up screen digitizing 

method subjectively determined by an analyst, and point method is selection o f a single pixel, 

perhaps from a field global positioning system location.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

(a)

Training Sample Methods 
(Natural & Cultural)

« 50

25-1 25-4 70-1

Imagery Combination

-♦-seed  15 
polygon 

- a -  seed25 
seed5 
seed2 
point



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

(b)

o
re

o
re
reh.
re>
O

Training Sample Methods 
(Natural)

70

65

60

55

50

45

40

35

30
70-425-1 25-4 70-1

polygon 
-•-seed  15 

seed25 
* seed5 

seed2 
point

Imagery combinations



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

(c)

Training Sample Methods 
(Cultural)

™ 60

25-1 25-4 70-1

Imagery com bin ations

70-4

-♦ -seed  15 
seed25 
polygon 
seed5 
seed2 

-•-point



2-71

Figures 6a-c. Accuracy assessment Kappa score results for spectral, spatial, training method 

combinations, reported as a bar chart for (a) natural and cultural, (b) natural features, and (c) 

cultural features. The y-axis depict Kappa scores, reported as a value between 0.00 and 1.00, 

representing the amount o f agreement between a classified cover type map and the truth set 

collected in the field. The x-axis shows the 24 possible images defined by spectral, spatial, 

and training sample method combinations. The top three Kappa scores are achieved from 

25nm/4m imagery using training sample methods that acquire the most training pixels.
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Chapter 2 to Chapter 3 Transition

The work presented in this past chapter provided insight into the capabilities o f emerging 

high-resolution remote sensing platforms for classifying landscape cover types 

accurately. Chapter 3 investigates 1-meter spatial, 70-nm spectral imagery (imagery with 

resolution roughly equivalent to IKONOS panchromatic imagery that has been 

transformed with coincident 3-channel spectral data). IKONOS represents a new 

participant in the commercial spectral imagery community and another available data 

source from which resource managers must choose the best applicable imagery. The 

airborne image set proved suitable for classification o f categorical biomass index 

differences in homogeneous stands o f Phragmites australis (common reed). This 

capability for structural mapping is an extension to simpler cover class thematic mapping. 

Field data and image reflectance values within P. australis stands are statistically 

compared. The approach offers a potential method for remote monitoring o f an 

historically unwanted plant that often out competes native plants for habitat.
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Abstract

Phragmites australis was characterized remotely using high spatial 

resolution airborne multi-spectral imagery. Different spectral reflectance 

values were observed across monotypic reed-stand sample plots, believed 

to represent structural differences such as stand height, stem counts, 

average culm diameter and herbaceous understory cover percent. 

Reflectance values were acquired from the imagery at ten sample locations, 

followed by field measurements of the four structural variables cited above 

at coincident geographic locations on the ground. Statistical cluster trees o f  

sample plot reflectance values were compared to clusters and their 

members that defined corresponding field data. Classes from the red- 

channel reflectance values came close to a direct match with the classes and 

members from the field data, misclassifying only one sample plot from the 

moderate to the low biomass index class. A high biomass index class was 

clearly separable with identical P. australis sample plots selected as 

members o f the cluster. Analysis o f variance and multiple regression 

confirmed that red-channel reflectance values best predicted biomass index 

field data categorized into classes: low, moderate and high. The addition o f  

a green-, blue-, and NIR-image channel increased the predictive power o f  

image reflectance values to classify P. australis into low, moderate and 

high biomass index classes. Remote identification o f high biomass index 

stands may help to target remediation efforts.
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Introduction

Phragmites australis Cav. (common reed grass) is generally considered an invasive 

plant species along the eastern coast o f  the United States, providing both minimal food and 

cover for resident wildlife (Marks et al, 1994; Pykes et al, 1999; Weinstein and Balletto, 

1999). It is a facultative wetland species that has adapted uniquely well to low, marshy areas 

o f the Atlantic Coast (Silberhom, 1999). High brackish and freshwater inland marsh systems 

may be dominated quickly by this species due to its rapid lateral expansion at the expense o f 

native species. While there is little historical quantitative data on percentage cover o f P. 

australis in the eastern United States (Rice et al, 2000), one study originating from 

Connecticut salt marshes suggests extensive colonization (Roman et al, 1984); Delaware salt 

marshes are now dominated by P. australis (Hellings and Gallagher, 1992); and Virginia’s 

fifteen constructed wetlands are showing signs of extensive invasion (Havens et al, 1997). 

Phragmites australis can grow exceptionally tall, extending upwards o f  4-meters (Weinstein 

and Balletto, 1999) and aggressively out-competes native plants such as big cordgrass 

{Spartina cynosuriodes L.) and wild rice (Zizaniopsis miliacea Michx.) through reproduction 

from both its rhizome and seed head (Silberhom, 1999). They are a particularly 

opportunistic species for invasion o f soil disturbed naturally (e.g., at a high water rack line; 

created from decline in hydro period) and by anthropogenic means (e.g., excessive 

sedimentation) (Havens et al, 1997). These mono-culture environments are believed by 

some to reduce diversity and habitat quality (Pyke et al, 1999; Weinstein and Balletto, 1999; 

Rice et al, 2000). Phragmites australis has been shown to restrict tidal flow and drainage 

and thereby inhibit nutrient exchange (Pyke and Havens, 1999; Weinstein and Balletto,

1999), impounds and restrict interior Spartina communites from receiving needed water
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flow, fragments Spartina vegetation communities, reduces plant to water interface for 

exchange o f processes, and affects ingress and egress of fish (Weinstein and Balletto, 1999). 

Other researchers have shown neckton abundance to be statistically similar between S. 

altemiflora L. and P. australis dominated nurseries (Meyer et al, 2001; Able et al, 2001).

Levine et al (1998) suggested New England salt marsh plant species were limited at 

the lower elevation by waterlogged soil and at the higher elevation by competition among 

species. Pyke and Havens (1999) showed a negative linear relationship between sediment 

depth and proliferation o f P. australis, with accumulation of sediments closer to creek 

channels. They described ideal conditions for P. australis as oxidized soil just below the high 

water line that did not accumulate sediments. Amsberry et al (2000) supported these claims 

in their studies where transplanted P. australis would die off when relocated to the lower 

marsh zone that is deficient in available oxygen and waterlogged by daily tides. Higher 

marsh development is promoted by the falling out o f solution of suspended sediments as tidal 

sheet flow reduces in velocity when it reaches dense stands of P. australis (Weinstein and 

Balletto, 1999). Rooth and Stevenson’s (2000) coastal study results indicated an increase in 

elevation for P. australis stands despite no increase in sediment delivery to the environment, 

suggesting that litter accumulation and below ground accumulation was increasing the 

substrate elevation. The ability of P. australis to alter the environment physically to prepare 

better for its advance into neighboring communities is complemented by its ability for lateral 

movement from the upper marsh into the lower marsh by clonal integration (Amsberry et al,

2000). This physiological process provides a mechanism for P. australis to creep into the 

edges o f environments originally inhospitable to them (Amsberry et al, 2000).
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Monitoring the expansion of P. australis has been suggested from both indirect and 

direct approaches. Roman et al (1984) stated that growth and distribution o f marsh 

vegetation other than P. australis could provide indicators (or indirect surrogate variables) as 

to the stage of conversion o f  a marsh from an unrestricted tidal flow creek with minimal P. 

australis to a fully degraded marsh dominated by Phragmites. Shrub specie increases (e.g., 

Iva frutescens L.) and decreases in S. alterniflora tall form along creek banks were cited as 

specific indicators o f vegetation change in a restricted marsh (Roman et al, 1984). Shoot 

density at 14 marsh study sites in Massachusetts were measured directly and analyzed for 

steepness of transition between community types with shoot density analyzed by ANOVA 

and Tukey post hoc pair-wise comparison (Keller, 2000). Results from this work were 

inconclusive and long-term research was identified as necessary to examine the rate o f spread 

o f P. australis into established communities (Keller, 2000). Rice et al (2000) found high 

biomass rates in two salt marsh study sites in the Chesapeake Bay area associated with high 

intrinsic rates o f P. australis expansion with a third salt marsh site exhibiting low biomass 

but high expansion rate (Rice et al, 2000). Growth rate differences computed for older and 

newer stands o f P. australis indicated highest rates o f area expansion for the youngest stands 

(Rice et al, 2000). Remote monitoring of P. australis could provide a rapid, non-intrusive 

vegetation classification assessment method.

The purpose o f this work was to determine if  high-resolution multispectral imagery 

could be used for classifying structural differences in P. australis stands. If imagery proved 

useful for distinguishing stands o f differing structure, follow-on field research recommended
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by Keller (2000) would examine the rate o f spread o f P. australis into neighboring 

communities. Specifically, stands o f highest biomass index would be likely to expand 

laterally first, thereby testing earlier findings of Rice et al, (2000), where growth rate was not 

related to biomass or abundance. Numerous plots of P. australis were tested for remote 

characterization from high-resolution airborne multispectral imagery. Ten P. australis stands 

were subsequently visited to validate the hypothesis:

(H0): imagery reflectance values are not related to P. australis biomass index.

(Ha): imagery reflectance values are a function of P. australis biomass index.

Methods 

Site Description

Eighteen barrier islands make up a chain trending northeast-to-southwest off of 

Virginia’s Eastern Shore (Figure 1. Location map ofParramore Island, Virginia). Parramore 

Island was selected as the primary study site; it is the central-most island in this barrier chain. 

Since the late 1980’s Parramore Island has been privately owned and access to the island has 

been restricted. No permanent human population inhabits the island and activities such as 

agriculture, hunting, logging or similar activities are prohibited. Island orientation is 

approximately 15 degrees east o f north and it has the classic drumstick shape indicating 

rotational instability (Haynes, 1979). The island is approximately 10-kilometers long by 1.5- 

kilometers wide and is separated from the mainland by a series o f  bays, salt marsh and small 

tidal creeks. Parramore exhibits classic dune and valley geomorphology with (from seaward)
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a sandy beachfront, dune / ridge sequence, maritime forest, inland marsh, and a bay-side 

marsh complex.

Barrier island dune and valley complexes represent unique geomorphological 

conditions that support very distinct vegetation zonation, a direct response to environmental 

conditions such as salinity, period o f inundation (Mitsch and Gosselink, 1993), and tidal 

range (Frey and Basan, 1974). Homogenous stands o f cattails (Typha angustifolia) and P. 

australis are found growing within Parramore Island's upper valley marshes. The high marsh 

also supports low-density, short-height marsh elder (I. frutescens) and groundsel-tree 

(Baccharis halimifolia), found in co-existence with an herbaceous component that includes 5. 

patens and T. angustifolia. A comprehensive description of a Virginia barrier island 

ecosystem can be found in McCaffrey and Duesser (1990) and Scott (1991). Figure 2 shows 

the northern end o f Parramore Island where P. australis co-dominates in the higher marsh 

along with S. patens and T. angustifolia. Phragmites australis is considered to be a 

management problem along the coastal plain of Virginia (Pyke and Havens, 1999).

Imagery data acquisition

Digital multispectral imagery was obtained over the Parramore Island study site on 

May 30, 1999 (unpublished data) from a small, lightweight 4-camera imaging system fitted 

with 25 nanometer wide bandpass interference filters centered at 450 (blue), 550 (green), 650 

(red) and 800 (near infra-red) nanometer band centers. Spatial ground sample detection was 

approximately 1.5-meters. The camera system named the Computerized Airborne Multi
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camera Imaging System (CAMIS) was purchased in 1999 by the U.S. Army Topographic 

Engineering Center as a beta test system from FlightLand Data, Inc, located in Boston, MA.

Ten field plots o f P. australis were selected randomly from a multispectral imagery 

vegetation classification. A mean spectral reflectance was computed for each plot by 

acquiring approximately 30 to 36, 1.5m pixels from each stand, with the position o f the 

central-pixel identified by geographic coordinates. Pixels were selected visually by 

digitizing a polygon around the central pixel within the P. australis class type. The central 

geographic coordinates were used for location in the field. Reflectance values were acquired 

for the blue (450 nm), green (550 nm), red (650 nm), and near infra-red (780 nm) image 

channels. A normalized difference vegetation index (NDVI) value was computed and 

reported for each o f the ten plots.

Field plots

Field data were acquired in early November 1999, late enough in the growing season that 

P. australis had entered senescence. A one-meter quadrat plot was used in the field to 

delineate sample plots. Average height range (reported by Vi meter), stems per meter 

(density), average culm (stem) diameter, and percentage cover of all individual species were 

recorded for each data point. Stand height range was calculated by tape measure. All stems 

within the quadrat equal to or greater than 1-meter in height were counted. Diameters o f all 

stems greater than 1-meter in height within a 1/4-meter-quadrat were measured 15cm above 

ground level, and an overall mean diameter for the full quadrat was estimated. Spartina 

patens cover was visually estimated on a decile percentage scale.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3-8

Phragmites australis begins growth in the spring usually after the last frost 

(http://www.fs.fed.us/database). Shoots emerge in the April to May timeframe in 

Connecticut (Haslam, 1969) and in February in the Southeast (Leithead et al, 1971). 

According to the National Oceanic and Amospheric Agency, March 23rd represents the 50% 

probability date for the end o f  the frost season in Norfolk, Virginia, a location that is 

approximately 50 miles south o f  Parramore Island and also along the coast (NOAA. 1988). 

March 23 seems to be a reasonable approximation for Parramore given the Norfolk data and 

suggested times of shoot emergence for Connecticut to the north and the southeastern states. 

Period o f shoot emergence can be between one and three months long (Cross et al, 1989). 

Accordingly, new shoots would likely have emerged at Parramore beginning late-March and 

continued no later than the end o f  June, or one-month after the May 30 image acquisition 

date. Older P. australis stems were no longer in senescence by May 30 so the collection date 

was agreeable for measuring green biomass. Reflectance values for this study, therefore, 

depicted P. australis stand conditions during the conclusion o f  the growing season.

Following emergence, new stems can grow up to 4cm per day

(http://www.fs.fed.us/database). This information suggests a possibility that a few o f the 

shorter stems counted and measured in the November timeframe actually emerged in June 

after the May collect. Furthermore, it suggests that the diameter o f some stems may have 

increased slightly during the month o f June. In classifying the May 30 imagery, there was no 

attempt to separate out older stems, some dead, from new growth. Likewise, there was no 

attempt to do so in the field. Common factors affecting spectral reflectance are soil and dead 

biomass, and soil is only pertinent when there is a sparse canopy o f  less than 30% cover 

(Gross et al, 1989). Dead biomass will cause the red channel spectral reflectance to increase,
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and increases in red reflectance are correlated with decreased green biomass within a salt 

marsh community (Hardisky et al, 1986). The investigation proceeded without addressing 

approximate stem age and their potential phenological contribution to image reflectance. 

Each stem was considered equivalent regardless o f age.

Statistical computation

Stands o f P. australis were grouped into classes termed "low", "moderate", or "high" 

biomass index, with biomass index determined from equation 1. This new variable 

(“biomass index”) was computed by first normalizing all the data using a linear scale 

transform with maximum score procedure (Malczewski, 1999) and converting all maximum 

measured values in categories "height", "stem count", and "culm diameter" to 1.0. Percent 

cover o f other species, primarily S. patens but also T. angustifolia, detracted, rather than 

contributed, to the computation o f a biomass index estimate and was only considered if 

biomass index class designation was not definitive. All normalized values were entered into 

the following equation to calculate the new variable:

H x S x C = B, where (1)

H = average plot stand height 

S = stems per meter 

C = average plot culm diameter 

B = average plot biomass index

Field data were grouped statistically by an icicle-tree (dendrogram) clustering algorithm 

using Ward's method. This method is different from other clustering techniques because it
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uses an analysis of variance approach for assessing distance between clusters, minimizing the 

sum o f squares o f clusters formed at each step (Stat Soft Inc., 1995). Cluster analysis 

attempts to group variables that are highly correlated with each other and excludes variables 

that are not. Cluster analysis can be carried out for either presence and absence (qualitative 

data) or quantitative data with nearly identical results (Magurran, 1988). To compute these 

clusters, percent cover o f understory was not considered as a variable. Three clusters were 

selected because a long-term goal was to sub-divide remotely characterized P. australis 

stands into three groups o f  biomass index— low (1), moderate (2), and high (3) biomass 

index — with high biomass index area presumed, but as yet untested, to be the most likely to 

advance laterally first. Additional clustering methods using single linkage and complete 

linkage with euclidean and squared euclidean distance variation were evaluated and used to 

derive the original three cluster groupings with equivalent plot members. Field data clusters 

and their respective plot members provided patterns of cluster structure. Subsequent cluster 

analysis o f the image reflectance channels identified clusters and plot members that most 

closely matched the field data. Essentially, an exploratory search for the "right" combination 

o f image channel reflectance values was undertaken and included: all image channels, near 

infra red (NIR), NIR and NDVI channels, red channel, and all image channels except NDVI, 

again using the Ward's clustering method with euclidean distance.

A one-way analysis o f  variance (ANOVA) using the General Linear Model (GLM) 

within Statistica (StatSoft, Inc., 1995), designed to test single categorical variables against 

continuous data (reflectance values), was used to confirm the results of the reflectance value 

clusters (if the reflectance cluster plot members matched the field cluster plot members) or,
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conversely, to demonstrate that reflectance cluster plot members did not match field cluster 

members (i.e., imagery reflectance values were too similar). To test the ANOVA, reflectance 

value plot data were coded with a categorical value o f  1, 2 or 3, matching the equivalent field 

plot cluster membership. All reflectance plot data were grouped by the categorical value 1,

2, or 3, tested by ANOVA for spectral differences, and analyzed by a Tukey test to determine 

if  the interaction found in the image channel data set is explainable by a combination o f 

independent variables (Sokal and Rohlf, 1995). Post-hoc comparisons, such as the Tukey 

test, may be completed when categorical predictor variables yield unexpected results that 

need to be proven reliable by hypothesis testing (StatSoft, 1995). Tukey is a multiple 

comparison procedure wherein all variables are compared in a pairwise manner (Zar, 1999) 

taking into account the fact that more than two samples are computed (StatSoft, 1995). 

Whenever statistically significant F test scores are reported from an analysis o f variance 

testing, there is an interest in assessing which groups are different from each other. 

Accordingly, Tukey was computed to understand better the contribution o f reflectance 

channel variables in remotely distinguishing between biomass clusters low, moderate, and 

high. Finally, forward stepwise regression was applied to all image channel reflectance 

values to test the predictive power of each image channel in estimating biomass index class. 

Image channels are rank-ordered based upon their respective contribution in explaining the 

variance in biomass index class, and included into the linear regression model.

Results

Table 1 gives the reflectance values o f the P. australis sample plots, and Table 2 reports 

the coincident vegetation structural data measured in the field. Normalized field data are
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given in Table 3, with a P. australis biomass index class assigned for each field plot.

Biomass index values were rank-ordered from smallest to largest. A percentage change o f 

greater than 25% in biomass index scores, comparing the smaller preceding index score to 

the next higher index score, was used to quantitatively delineate class thresholds Low, 

Moderate, and High. A low class was easily separated out, as plot members phrag24 and 

phrag27 each had less than a 1 per cent biomass index score. A review o f  the raw field data 

in Table 2 illustrated that these sample sites contained an herbaceous S. patens understory 

and had the smallest average culm diameters. Biomass index class 1 was termed "Low", for 

low biomass index. Biomass index class 2 was termed "Moderate", and contained plot 

members phrag20, phrag21, phrag22, phrag23, phrag 28, and phrag25. The term moderate 

was assigned because raw stem counts were all between 165 and 216 stems per meter and the 

biomass index computed values were reported between 0.20 and 0.40. Biomass index class 3 

was called "High", and contained phrag21 and phrag22, with respective biomass index values 

o f 0.55 and 0.79. Raw stand height and average culm diameter values were highest for these 

two plots. These two high biomass index sample plots are stands that warrant close 

monitoring for advancement. Figure 3 is a bar chart that depicts normalized field data 

measured at each sample plot with low biomass index plots identified on the left, moderate in 

the center, and high on the right o f the chart.

Figure 4 is the dendrogram from the classification of P. australis biomass index values 

computed from normalized field plot data. Cluster analysis suggested four clusters identified 

at linkage distance 0.4 to 0.8, or perhaps three clusters as identified at linkage distance 0.8. 

Regardless if  four or three clusters are designated, there is a distinctive high biomass index
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class o f P. australis with plot members phrag21 and phrag22, and a low biomass index class 

with plot members phrag24 and phrag27. The remaining sample plots can be separated into 

two classes (using linkage distance 0.4 to 0.8) or combined into one class (linkage distance 

0.8) and are members o f the moderate biomass index cluster. To simplify further 

investigations, all moderate biomass plots were classed together as designated at linkage 

distance 0.8, suggesting a total o f three field clusters. There was a perfect match between 

low, moderate, and high cluster groupings and plot memberships determined from the cluster 

analysis method and from rank ordering and identification of 25% changes in biomass index 

method discussed earlier. Clusters were computed for imagery reflectance values selected 

from: all image channels, NIR channel, NIR and NDVI channels, red channel, and all image 

channels except NDVI. Figure 5 is a dendrogram o f the red channel, the channel that 

resulted in cluster membership most nearly identical to the field data cluster members. Red- 

channel clusters correctly separated out P. australis plots phrag21 and phrag22 as members 

o f the high biomass index class. Low biomass index class correctly identified plot members 

phrag24 and phrag27, while plot member phrag26 plot was incorrectly included within the 

low biomass index class. An "all-image-channels" combination attempt was also largely 

successful, but it failed to group correctly low biomass index class members (phrag24 and 

phrag27) together within the very first clustering step. The other three image channel 

combination attempts (NIR, NIR and NDVI, and all-image-channels-except-NDVI) resulted 

in class memberships that did not match the field data.

Image channel data was evaluated using ANOVA and Tukey tests. One-way analysis of 

variance results were computed using the average digital numbers (reflectance values) for
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each channel as the dependent variable and the classes codes 1, 2, 3, representing low, 

moderate and high biomass index, as the independent variable. Results are given in Table 4. 

The red-, green-, and NDVI-channels were significant at the 95% confidence with 9 d.f.

(Red: F-stat = 14.98, p-value = 0.003; Green: F-stat = 6.57, p-value = 0.02; NDVI: F-stat= 

5.92, p-value = 0.03). A post-hoc comparison Tukey test was performed to determine which 

P. australis biomass index classes were most different from another, based on all image 

channel reflectance values. Post-hoc comparison techniques specifically took into account 

the fact that more than two samples were taken in this test (in this case 3 biomass index 

classes). Tukey difference between the low- and high-biomass index classes was 0.08, and 

between the moderate and high biomass index class was 0.36. An additional Tukey test was 

computed for the red-channel reflectance values only and the differences between the low 

and high index classes was 0.002, and between the moderate and high biomass index class 

was 0.09. Tukey results are given in Table 5. Multiple regression test results report a 

significant (p-value= 0.004, d.f. = 9) and high score (r2 = 0.97) for all five image channel 

reflectance values. A forward stepwise regression identifies four image channels (green, 

blue, red, NIR) as contributing to the overall prediction, with the red-channel explaining 79% 

o f the variance; red and NIR explaining 85% of the variance; red, NIR, and green explaining 

90% of the variance; and red, NIR, green, and blue explaining 96% of the variance. The 

NDVI index contributes 1% additional explanation (Table 6. Stepwise multiple regression 

results for imagery channel reflectance values prediction o f biomass index class).

These results indicate that identification of structural changes in P. australis can be 

remotely differentiated by high spatial resolution multispectral imagery. The green-channel,
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red-channel, and NDVI were each statistically significant in defining biomass index class. 

The red-channel reflectance values achieved better F, r2, and p-value analysis o f  variance 

scores, and were responsible for the generation o f clusters and cluster members most 

equivalent to the field data clusters. Tukey test results for all- image channels suggested that 

there was very good separability between the lowest biomass index class and the high class. 

The 0.36 score indicated it would be difficult to classify a P. australis site confidently as high 

versus classifying it as moderate. A measure of confidence (e.g., 64% confident the site is 

high biomass index) could be a preliminary consideration but additional sample field plots 

would be needed to address confidence levels adequately. A solution could be to use only the 

red-channel as Tukey separability results were excellent for this channel alone. A score of 

0.002 indicated that red-channel reflectance differences could be used to distinguish a P. 

australis site correctly between low and high biomass index classification 499 out of 500 

times. Separability between moderate and high biomass index classes reported a score of 

0.08, meaning that more than 90% o f the time the two classes could be correctly 

distinguished one from the other. An r2 value o f 0.79, for the red-image channel in 

predicting biomass index class, suggests that 21% o f the variance in the prediction has not 

been explained. Inclusion o f  the green-, blue-, and NIR-channels eliminated 18% of the 

unexplained variance in this data set, as reported by stepwise multiple regression result r2 = 

0.97.

Remote identification o f individual structural variables (stand height, stem count, culm 

diameter, under story per cent) is not suggested as a result o f this work. Rather, each of the 

structural variables measured in the field contributed to an understanding o f total plot
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biomass computed from equation 1 algorithm. Conversion o f the raw field measurements 

into normalized scores was necessary to reduce the importance o f stem count data and 

increase the importance o f culm diameter and stand heights. With all three variables equally 

weighted, the algorithm to compute biomass indices enabled an overall comparison across 

field plots. Additionally, clusters and their members first computed from the non-normalized 

P. australis field variables did not match with clusters and members computed from the 

imagery reflectance values.

Discussion

The original null hypothesis, H0i-imagery reflectance values are not related to P. 

australis biomass index, was rejected. Following a normalization o f  P. australis stem count, 

stand height, and culm diameter data, Ward’s method of cluster analysis demonstrated 

similar agreement in field plot groupings derived independently from the field data and the 

imagery red channel reflectance values. This finding suggests that the imagery red channel 

alone was able to distinguish biomass index differences o f the P. australis. The clustering 

did not suggest an ability to rank order the field plots from high to low. Once a plot has 

been rank ordered by field investigation into a high, moderate or low biomass index class, all 

additional plots within the remotely sensed grouping could be considered to be of the same 

biomass index class. Additionally, statistical tests for ANOVA and stepwise regression 

affirmed a relation between the red channel reflectance values and the grouped field plot 

data.
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Red channel mean reflectance values per sample plots followed an inverse pattern with 

biomass index values. Table 7 relates highest red reflectance values to lowest biomass 

values. The data are evidence o f the chlorophyll absorption capacity of the 650nm-centered 

red channel, where higher P. australis biomass resulted in less reflected energy for the 

airborne camera to record. Conversely, lowest biomass index plots reflected the highest 

amounts o f energy in the red channel, despite the existence o f  a S. patens herbaceous 

understory. Figure 6 illustrates the relationship between red channel reflectance, recorded in 

digital numbers (0-255), and the biomass indices classed into low, moderate, and high 

groupings.

Remote sensing enabled an assessment of the quantitative differences in P. australis 

biomass. A logical following question to be addressed is: Is there a propensity for high 

biomass Phragmites (as classified remotely) to advance laterally first, before the remotely 

classed moderate and low biomass groups? An eventual goal would be to assess P. australis 

stands remotely and determine stands most likely to advance laterally. Fifteen constructed 

wetland plots under invasion by P. australis have been measured by Havens et al (1997) and 

could provide a baseline o f information for evaluating lateral advancement. Spectral imagery 

would be needed over the sites. Rice et a/’s (2000) work is particularly important as it 

showed highly established P. australis stands measured growth rates much lower than newly 

established stands. These findings suggest that moderate or low biomass stands, as identified 

from remote sensing, could be the most likely to advance.
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Clearly, other factors have been shown to control the advancement o f P. australis and 

were cited earlier in this paper, including salinity, oxygen, and period o f inundation. Huggett 

(1995) suggests that multivariate statistical methods are the best strategy for investigating 

ecosystems. Given sufficient biomass, salinity, oxygen, age o f  stand (if known) and 

hydroperiod independent variable data, and annual lateral advancement o f P. australis 

dependent variable data, a researcher could apply several multivariate techniques to 

investigate the contribution o f  each independent variable. This would better prepare 

managers for stands in need o f  immediate attention. Advancement o f P. australis area across 

a landscape can be measured from a temporal series o f remote images.

Much research on P. australis has focused on the biogeochemical conditions under which 

expansion occurs. Changes in vegetation patterns can be a direct expression o f the response 

o f a wetland ecosystem to manmade pressures such as population growth, surrounding 

development, freshwater withdrawal for industrial purposes (Havens et al, 1997), and tidal 

flow restriction behind manmade constriction structures (Roman et al, 1984). Inundation is 

minimized with increasing elevation above high tide, and so Rooth and Stevenson (2000) 

investigated the probable causes for elevation increase under P. australis stands. They found 

elevation increases over a short duration o f time attributable to below substrate P. australis 

rhizome development and above ground litter accumulation. Rooth and Stevenson (2000) 

suggested that P. australis be considered as a potential control technique for combating sea 

level rise, but given the plethora o f evidence provided by others that P. australis restriction 

o f tidal flow impacts negatively on nutrient exchange from marsh to estuary, this option for 

sea level rise control seems unlikely to be implemented.
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Subsequent research should test the ten original plots examined for this work. Area 

measurements can be completed using imagery analysis tools. If such research confirms that 

high biomass stands do expand their aerial extent before lower biomass stands, a shift in P. 

australis monitoring and management methodologies would be warranted. Remote prediction 

o f lateral expansion would help to target remediation efforts to those sites at greatest risk 

only.

Conclusion

Phragmites australis was characterized remotely using high spatial resolution airborne 

multi-spectral imagery. Different spectral reflectance values were observed across 

monotypic reed-stand sample plots, believed to be representative o f  structural differences 

such as stand height, stem counts, average culm diameter and herbaceous understory cover 

per cent. Reflectance values were acquired from the imagery at ten sample locations, 

followed by field measurements of the four structural variables cited above at coincident 

geographic locations on the ground. Field data were normalized and biomass index values 

computed for each plot.

Field plots were classified manually into one o f three groups based on the computed 

biomass index values: low, moderate and high. A statistically objective approach confirmed 

these classes and the membership o f sample plots within each class. A dendrogram of the 

raw field data (Variables: "average stand height", "average culm diameter", and "stem 

count") from Ward's method with euclidean distance measures revealed three identical
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groups of equivalent sample plot members. Dendrograms o f the sample plot reflectance 

values were compared with the pattern and structure o f previously defined field data clusters 

and their members. Red-channel reflectance values came close to a direct match, 

misclassifying only one sample plot from the moderate to the low biomass class. Perhaps 

most importantly, a high biomass class was clearly separated with correct P. australis sample 

plots selected as members of the cluster.

Analysis of variance and multiple regression testing confirm that red-channel reflectance 

values were best for predicting low, moderate, and high P. australis biomass index field 

classes. The addition o f  a green-, blue-, and NIR-image channel increased the predictive 

power of image reflectance values to classify P. australis into low, moderate and high 

biomass classes from 0.79 for the red-channel alone to 0.97 for all image channels.

Phragmites australis has been described as an aggressive eastern United States species 

that merits the continued attention of natural resource managers. Understanding the physical, 

chemical and biological processes under which this invader might likely expand is critical. 

Management activities that increase tidal flow across a marsh should increase salinity and 

inundation, decrease oxygen and potential for sediment build-up, and thereby hinder the 

ability for P. australis to propogate laterally (Roman et al, 1984; Havens et al, 1997; 

Weinstein and Balletto, 1999). Long-term research is needed to examine the rate o f spread 

o f P. australis into established communities (Keller, 2000). Related future research is 

specifically needed to examine the expansion rates o f high-density P. australis (as measured 

from remote sensing) to determine if these stands are indeed the first to laterally expand at
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the expense of adjacent communities. Remote sensing could have potential value as an early 

warning detection system for the identification of stands most prone to expansion. As P. 

australis expands in territory, elimination of higher value communities and overall decline in 

ecosystem health characterized by loss o f plant diversity/complexity, loss o f shelter/habitat, 

and decline in food source is potentially at stake.
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Table 1. Reflectance values of P. australis sample plots are provided. “Plots” represent the 
sample locations and “blue”, “green”, “red”, “NIR” (near infra-red), and “NDVI” 
(normalized difference vegetation index) represent image channels, or indices, from the 
multi-spectral image source. Values are digital numbers from the imagery between 0 and 
256.

Plots Blue Green Red NIR NDVI
phrag20 84.1 92.3 29.8 50.3 160.0
phrag21 83.8 86.0 27.1 52.4 167.4
phrag22 82.6 89.7 27.5 60.8 175.0
phrag23 85.2 84.9 29.5 39.2 145.4
phrag24 90.6 101.3 35.1 49.6 149.7
phrag25 88.3 95.3 29.7 51.1 161.1
phrag26 91.8 99.1 33.8 53.9 156.7
phrag27 89.3 103.5 35.6 57.4 156.5
phrag28 84.6 91.7 30.6 47.1 154.6
phrag29 84.4 91.5 28.9 49.8 161.5

Table 2. Phragmites australis field data, prior to normalization. “Plots” represent the sample 
locations; “height-range” represents the minimum and maximum stand height in meters 
found at the sample site; “low height” is the minimum stand height in meters found at the 
sample site; “stems” are the number counted within a im  quadrat equal to or greater than lm 
in height; “under” is the percentage o f herbaceous understory (typically S. patens) found 
within the plot; and “culm” is the average diameter in millimeters o f all stems greater than 
lm  in height, measured within a quarter-quadrat, measured 15cm above ground level.

Plots
Height-
Range

(m)

Low
Height

(m)

Stems
(#)

Under
(%)

Culm
(mm)

phrag20 2-2.5 2.0 152 0 6.0
phrag21 2.5-3.0 2.5 162 0 7.0
phrag22 2.5-3.5 2.5 216 0 7.6
phrag23 2-2.5 2.0 102 0 4.8
phrag24 1.5-2 1.5 39 55 3.1
phrag25 1.5-2 1.5 165 0 5.7
phrag26 1.5-2 1.5 273 0 4.7
phrag27 1.0-1.5 1.0 14 70 4.0
phrag28 1.5-2 1.5 172 50 4.2
phrag29 2-2.5 2.0 254 0 4.1
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Table 3. Normalized field data are given, computed against data in Table 2 from a linear 
scale transform with maximum score procedure (Malczewski, 1999). In the following table, 
“plots” represents the sample plot location, “height” represents the normalized average plot 
stand height, “stems” represents the normalized number o f  stems in a sample plot, “culm” 
represents the normalized average diameter of stems measured 15cm above ground, “under” 
represents the normalized understory percentage o f herbaceous plants, “biomass class” 
represents the categorical classification of biomass index value. “Biomass index" values are 
computed from the equation:

H * S * C = B, where
H = average plot stand height 
S = stems per meter 
C = average plot culm diameter 
B = average plot biomass index

A P. australis categorical biomass class was assigned to each field plot. Three class 
groupings of biomass index values were computed, therefore, three categorical biomass 
classes were assigned. Biomass class 1 was named "Low", for low biomass, and contained 
plot members phrag24 and phrag27; biomass class 2 was termed "Moderate", and contained 
plot members phrag20, phrag21, phrag22, phrag23, phrag 28, and phrag25; biomass class 3 
was called "High", and contained phrag21 and phrag22.

Plots Height Stems Culm Under Biomass Index Biomass Class
phrag20 0.8 0.56 0.79 0 0.35 Moderate
phrag21 1.0 0.59 0.92 0 0.55 High
phrag22 1.0 0.79 1.00 0 0.79 High
phrag23 0.8 0.40 0.63 0 0.20 Moderate
phrag24 0.6 0.14 0.41 0.55 0.03 Low
phrag25 0.6 0.60 0.75 0 0.27 Moderate
phrag26 0.6 1 0.62 0 0.37 Moderate
phrag27 0.4 0.051 0.53 0.7 0.01 Low
phrag28 0.6 0.63 0.55 0.5 0.21 Moderate
phrag29 0.8 0.93 0.54 0 0.40 Moderate
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Table 4. One-way ANOVA results between reflectance values o f image channels (and 
indices) are listed in the following table. For purposes o f  this test, phrag28 plot was 
identified as a member o f  biomass cluster “Moderate”. The red-, green-, and NDVI-channels 
were significantly different at the 95% confidence with 9 degrees o f  freedom (Red: p-value = 
0.003; Green: p-value = 0.02; NDVI: p-value = 0.03).

Image channel
, - ■ 

r F-stat F-critical p-value df
Blue 0.49 3.30 4.74 0.10 9
Green 0.65 6.57 4.74 0.02 9
Red 0.81 14.98 4.74 0.00 9
NIR 0.36 1.97 4.74 0.21 9
NDVI 0.63 5.92 4.74 0.03 9

Table 5. Tukey test results for (a) all image channels and (b) red-channel reflectance values 
only, (a) A post-hoc comparison Tukey test was computed to determine which P. australis 
biomass index classes were most different from another, based on all image channel 
reflectance values. “Low”, “mod”, and “high” represent biomass index class designations. 
Post-hoc comparison techniques specifically took into account the fact that more than two 
samples were taken in this test (in this case 3 biomass classes). Tukey test results show that 
the difference between low- and high-biomass classes was 0.08, and between the moderate 
and high biomass class was 0.36. Tukey test results for all- image channels suggested that 
there was very good separability between the lowest biomass class and the high class. The 
0.36 score indicated it would be difficult to classify a P. australis site confidently as high 
versus classifying it as moderate, (b) An additional Tukey test was computed for the red- 
channel reflectance values only and the differences between the low and high biomass 
classes was 0.002, and between the moderate and high biomass class was 0.08. A score of 
0.002 indicated that red-channel reflectance differences could be used to distinguish a P. 
australis site correctly between low and high biomass classification 499 out of 500 times. 
Separability between moderate and high biomass classes reported a score of 0.08, meaning 
that more than 90% o f  the time the two classes could be correctly distinguished one from the 
other.

(a)________________________________
Low (1) Mod(2) High (3)

Low (1) ----- 0.28 0.08
Mod (2) 0.28 ----- 0.36
High (3) 0.08 0.36 -----

£1
Low (1) Mod (2) High (3)

Low (1) ----- 0.01 0.002
Mod (2) 0.01 ----- 0.08
High (3) 0.002 0.08 -----
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Table 6. Summary o f stepwise multiple regression for all imagery channel reflectance values 
to test for estimation o f  biomass class. A forward stepwise regression identifies the order o f 
the five image channels (green, blue, red, NIR) as contributing to the overall prediction, with 
the red-channel explaining 79% of the variance; red and NIR explaining a cumulative 85% of 
the variance; red, NIR, and green explaining a cumulative 90% o f  the variance; red, NIR, 
green, and blue explaining 96% of the variance, and lastly the NDVI contribution helping to 
explain 97% of the variance. Red channel results are highly significant (p-value = 0.00). 
“In/out” represents the stepwise order in which variables explained biomass class. These 
results indicate that identification o f biomass index changes in P. australis can be remotely 
differentiated remotely by high spatial resolution multispectral imagery, with the red-channel 
alone explaining all but 21% o f the variance in estimation o f biomass class. Red-channel 
reflectance values achieved better p-values, and were responsible for the generation o f 
clusters and cluster members most equivalent to the field data clusters.

Image
Channel +in/-out Pearson’s r r r  change p-level

Red 1 0.89 0.79 0.79 0.00
NIR 2 0.92 0.85 0.07 0.12

Green 3 0.95 0.90 0.05 0.12
Blue 4 0.98 0.96 0.06 0.05

NDVI 5 0.99 0.97 0.01 0.30

Table 7. Biomass indices rank ordered, lowest to highest, with corresponding red image 
channel mean values for each plot location. Note that the low biomass classes have the 
highest red-means and the high biomass classes have the lowest red-means. This follows 
convention, as the red channel (650nm band center) is noted for vegetation absorption and 
areas with highest vegetation are absorbing energy and returning less reflected energy.

Plot ID Red-means Ranked Biomass 
Index

Biomass Class

phrag27 35.6 0.01 LOW
phrag24 35.1 0.03 LOW
phrag23 29.5 0.20 MOD
phrag28 30.6 0.21 MOD
phrag25 29.7 0.27 MOD
phrag20 29.8 0.35 MOD
phrag26 33.8 0.37 MOD
phrag29 28.9 0.40 MOD
phrag21 27.1 0.55 HIGH
phrag22 27.5 0.79 HIGH
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Figure 1. Location Map of study site at Parramore Island, Virginia. Eighteen barrier islands 
make up a chain trending northeast-to-southwest o ff of Virginia’s Eastern Shore. Parramore 
Island is the central-most island in this barrier chain. No permanent human population 
inhabits the island and activities such as agriculture, hunting, logging or similar activities are 
prohibited. The island is approximately ten kilometers long by one and a half kilometers 
wide and is separated from the mainland by a series of bays, salt marsh and small tidal 
creeks. Barrier island dune and valley complexes represent unique geomorphological 
conditions that support very distinct vegetation zonation. Homogenous stands o f cattails (T. 
angustifolia) and common reed (P. australis) are found growing within Parramore Island's 
upper valley marshes. The high marsh also supports Iow-density, short-height marsh elder (/. 
frutescens) and groundsel-tree (B. halimifolia), found in co-existence with an herbaceous 
component that includes S. patens and T. angustifolia.
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Figure 2. Photograph o f invading P. australis stand (left side) with S. patens shown in the 
foreground. The individual in the photograph provides an indication that the height o f the 
stand is greater than 2m.
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Figure 3. Bar chart o f normalized P. australis field data, measured at each sample plot 
location, with “low” biomass plots grouped together on the left, “moderate” grouped in the 
center, and “high” grouped at the right side o f the x-axis. Y-axis represents the normalized 
value o f each structural legend attribute scaled from 0.00 to 1.00. X-axis gives the sample 
plot study site names. Bars shown in the plot represent average height, number of stems, 
average culm diameter, and percentage of understory. If an understory bar is not shown for a 
sample plot, the percentage is 0.
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Figure 4. Dendrogram computed from Ward’s method o f clustering P. australis biomass 
index values, computed from normalized field plot data for stem count, stand height and 
culm diameter. Cluster analysis results suggest four clusters identified at linkage distance 0.4 
to 0.8, or perhaps three clusters as identified at linkage distance 0.8. Regardless if  four or 
three clusters are designated, there is a distinctive high biomass index class o f Phragmites 
australis with plot members phrag21 and phrag22, and a low biomass index class with plot 
members phrag24 and phrag27. The remaining sample plots can either be separated into two 
classes (linkage distance 0.4 to 0.8) or combined into one class (linkage distance 0.8), 
representing the members to the moderate biomass index cluster.
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Figure 5. Dendrogram computed from Ward’s method of clustering red-channel reflectance 
values, the channel that resulted in cluster membership most nearly identical to the field data 
cluster members. Red-channel clusters correctly separated out P. australis plots phrag21 and 
phrag22 as members o f  the high biomass class. Low biomass class correctly identified plot 
members phrag24 and phrag27, while plot member Phrag26 plot was incorrectly included 
within the low biomass class. Attempts at clustering other image channels, or combinations 
thereof, were unsuccessful at matching the field data clusters and class memberships.
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Figure 6. Biomass indices were rank ordered, lowest to highest, and graphed per field 
sample plot by their corresponding imagery red-channel digital number means. Note that 
biomass indices categorized low had the highest reflectance values while high biomass 
indices had the lowest reflectance values. This is due to the vegetation absorption 
characteristic o f the 650nm red-channel wavelength in the electromagnetic spectrum. Areas 
on the ground with less vegetation return greater amounts of reflected energy. Only field plot 
"phrag26" showed an inclination towards higher red-channel DNs, which explained it's 
erroneous inclusion into the red-channel cluster low category.
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Chapter 3 to Chapter 4 Transition

This past chapter described that P. australis could be rank ordered into high, moderate, and 

low biomass index classifications. Even after a careful spectral and statistical classification 

process, there are often problems with an imagery-derived map product that are visibly 

evident to a user based on his or her knowledge o f the environment and ecological processes. 

Chapter 4 addresses a post-classification method for corrective changes to imagery-derived 

landscape cover maps implemented using spatially explicit knowledge rules. Prototype 

corrective rules developed from textbooks, field experience, and gleaned from expert- 

knowledge, were subsequently developed into a spatial model within commercial image 

processing software. Geographic areas such as a coastal environment, and varying elevation 

strata within mountainous areas, are examples of zonal physiographic areas that lend 

themselves to general ecological rule correction. Revised landscape cover maps were 

compiled and the pre-and post-rule correction map products were compared.
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Abstract

Maps of imagery-derived classes might contain errors that are readily 

visible to the analyst and need automated correction. Simple “off-the- 

shelf’ algorithms might not do the required correction. Eleven 

landscape classes generated previously from imagery were post

classified using a new set o f rules. A review o f the final map showed 

classes that should never have existed. Accordingly, a set o f rules was 

developed combining the author’s field experience on site and 

literature sources about barrier island complexes. This paper goes 

sequentially through a methodology in which ecology-based 

knowledge rules were translated into targeted corrections o f incorrect 

vegetation classes. Rules were translated into conditional statements 

related to pixel adjacency and used neighborhood proximity and 

selected filtering options to eliminate or increase pixel classes.

Targeted vegetation class corrections resulted in an improved end 

classification with more than 20% o f the initially classified pixels 

converted to other classes. Over- or under-estimation o f vegetation 

extent could adversely affect management decisions. In spite o f the 

absence of an adjacency correction tool within ERDAS Imagine, 

modification to the existing modeling tools resulted in the 

implementation of a successful prototype for consideration and 

evaluation.
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Introduction

It is probable that uncertainty in the assignment of various landscape classification 

cover types is a source o f  error that needs correcting (Wilkinson, 1996; Zhang et al, 2001). 

Visual identification o f errors is often possible, especially to someone familiar to the area or 

with knowledge about the environment. Therefore, expertise about an area should improve 

the accuracy o f the resulting map and should be incorporated into it when possible.

Software image processing classification tools are available in many packages that address an 

entire image scene. Examples o f such classifiers include discriminant analysis, maximum 

likelihood, minimum distance and contextual classifiers (Hubert-Moy et al, 2001).

Contextual techniques were introduced to place prior constraints on pixel classifications 

usually based on neighboring pixels with the assignment o f pixels based on neighboring 

spectral information and the thematic class of neighboring pixels (Landgrebe; 1980;

DiZenso, 1987, Hubert-Moy et al, 2001). Following classification, other tools exist for 

correction of the imagery. For example, filters are often used to remove "speckle", or 

spurious pixels from a map. However, a ready to use tool that provides a user with the ability 

to target classification corrections to a particular cover classes as directly related to adjacency 

with another cover classes is does not exist as the author knows. Conventional contextual 

algorithms do not actually target corrections, and may perform well in one part o f an image 

while performing poorly in another (Chalmond et al, 2001).

However, the commercially available tool that most closely approximates a targeted 

post-classification correction is the contextual algorithm. Pixel classification from contextual 

algorithms is based on the strength o f the spatial relation to neighboring pixels in either a pre-
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or post-classification phase and is called contextual classification (Kartikeyan et al, 1993; 

Fuller and Jones, 1995; and Stuckens et al, 2000). ERDAS Imagine (ERDAS, 1999) image 

processing software has a module that incorporates user knowledge into a post-classification 

process. However, when tested, the module was deemed to be inflexible because it could not 

achieve the type of correction results sought for this work. Rules designed to post-classify a 

map must maintain the original integrity o f the correctly classified landscape. The 

framework, or methodology, in which rules are generated should be capable of modification 

to account for short- and long-term site condition changes. Sufficient flexibility in the way 

that the rule is constructed would encourage its wider use for many environmental study 

sites.

Remote sensing has been tested as a tool for ecosystem management. Nagendra 

(2001) reviewed the potential from remotely sensed data for mapping vegetation directly and 

for determining habitat suitability indirectly. Nagendra identified conditions under which 

remote characterization of biodiversity is possible and insists that there is continued need for 

relating field and spectral image data. Wessman et al (1998) said that remotely acquired 

imagery can be used to detect ecosystem processes and landscape relationships, such as edge 

configuration, habitat area, fragmentation, and human use. Cihlar et al (2000) found that 

land cover is a key for land use and land management decisions as it is a critical biophysical 

factor that determines the functioning o f terrestrial ecosystems in biogeochemical cycling, 

hydrological processes, and interation between surface and atmosphere. Delbaere and 

Gulinck (1995) said that between 1987 and 1994, the journal Landscape Ecology published 

no papers that referred directly to remote sensing. Jennings (2000) acknowledges that
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remotely sensed imagery has not been readily available in the past, and that accepted 

methods o f  classification based on ecology are now developed. The gap between landscape 

policy and remote sensing needs to be bridged, especially given the advantage of, among 

many cited benefits, remote sensing for vegetation cover mapping.

Incorporating prior knowledge into remote sensing classifications has predominantly 

been based upon image- or GIS-data. Mason et al, (1988) were among the first to investigate 

the use o f  digital map data as an ancillary source to assist in the segmenting and classifying 

o f remotely sensed images. Tonjes et al (1999) attempted to automate the interpretation of 

imagery by using common a priori knowledge about a landscape. General rules provided 

data and model strategies for image classification including the use o f  topological 

relationships that provide information about neighboring properties o f  objects. Knowledge 

was transferred horizontally within the same layer and allowed constraints to be placed on 

the classification. Laferte et al (2000) proposed tree-based contextual techniques where a 

single classification was replaced by a set o f classifications at multiple scales. Sanders and 

Tabuchi (2000) evaluated airborne radar for large-scale flood risk assessment to improve 

flood models. Quattrochi et al (2001) combined spectral land cover with thermal imagery to 

better understand heat island conditions in urban environments. Previous post-classification 

work includes attempts to improve accuracy within GIS to refine original map class 

boundaries based on zoning and demographic data (Harris and Ventura, 1995) and 

Hutchinson’s (1982) work with post-classification sorting. Harris describes the use of post

classification rules as deterministic and best suited to areas with well-defined boundaries 

between cover types. Hutchinson describes the benefits of post-classifications as simple,
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quick and easily implemented; efficient in dealing with problem landscape classes only; the 

ability to include multiple types of ancillary data in developing decision rules; and, the ability 

to easily create the decision rules.

The purpose o f  this project was to define a replicable method for post-classification 

correction o f an imagery-derived landscape class map. The aim o f this method was to target 

incorrect pixels for correction based on their topological inter-relationship and sound 

ecological principles.

Methods 

Study site

Parramore Island, Virginia, a vegetated transverse dune and valley barrier island, was 

selected as the study site to demonstrate the correction of incorrectly mapped landscape 

pixels using ecological knowledge. There is sufficient understanding o f  mid-Atlantic barrier 

islands and coastal wetland ecosystems in general (Scott, 1991; Mitsch and Gosselink, 1993; 

Silberhom, 1999) and specific knowledge o f  Parramore Island's ecological relationships 

(Slocum et al, in work). Spatial relationships between vegetation species are clearly evident 

on Parramore Island, as well as at other mid-Atlantic coastal sites. Lowest elevation grass 

communities (eg., Spartina alterniflora, Loisel) are adjacent to and are inundated daily by 

saltwater. These typically expansive monotypic stands change to higher marsh reed, grass 

and sedge communities exhibiting greater diversity across an exceptionally narrow elevation 

range (e.g., Spartina patens, Distichlis spicata, Typha angustifolia and Juncas roemerianus). 

It is common to find invasive Phragmites australis in this higher salt marsh environment,
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also. At the edges o f the high marsh, at the base o f the Parramore Island's dune formations, 

are small shrubby communities o f Iva frutescens and Bacharris halimifolia. Moving up the 

dune side slope one next encounters high-density shrub communities such as Myrica 

cerifera. At Parramore, this zone o f vegetation was generally from 10 and 20 meters wide. 

Finally, Pinus taeda was the dominant species o f the maritime forest that occupied the mid- 

and top-slopes o f the dunes. This ecological ordering o f vegetation was a recurring sequence 

that seems to be controlled by hydrogeochemical processes, such as hydrologic cycling of 

fresh- and salt-water, subtle changes in elevation, and soil strength (Oertel and Kraft, 1994; 

Hayden et al, 1995).

A dune and valley barrier island complex functions geographically in such a way that 

the spatial pattern is generally parallel to the main coastline and beach-front (Ahnert, 1996). 

The back-bay side of a barrier island is protected from storm events and most aeolian sand 

accretion (Hayden et al, 1995). On the other hand, the beach side o f the complex has 

primary and secondary dunes in parallel to the main shoreline, with beach grasses commonly 

thriving in these environments (Christensen, 1988). The accretion zone of a barrier island 

provides habitat that is suitable for beach grasses (Christensen, 1988; Shao et al, 2000). This 

zone is easily identified at Parramore and other mid-Atlantic islands by the drumstick-like 

shape caused by island rotation and long-shore transport o f sands (Scott, 1991). These sandy 

beach- and channel-side areas are higher in elevation and naturally much drier than the valley 

complexes (Hayden et al, 1995). Winding creek channels provide a daily conduit for the 

introduction of tidal salt water to penetrate the lower, and sometimes upper, marsh 

communities with creek meanders indicating level landscape areas with uniform soil
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conditions that provide little structural resistance to lateral relocation o f the channel (Ahnert, 

1996). Soil in the marsh, especially low marsh, is typically clay and silt-laden sediment 

delivered by the tides (Ahnert, 1996).

Multispectral imagery was obtained for the island at a ground resolution of 

approximately 1.5-meters in May 1999. The pixels from the image were classified into 11 

total classes, including 9 vegetation classes. An 11-classification map product (with 9- 

vegetation classes). There was no extensive image processing to improve the aesthetic 

appearance o f the map. An examination o f the classes on the map revealed problem areas in 

need of correction; these will be described below.

Landscape Classification

Spatial ecology-based knowledge was incorporated as part o f the following sequence: 

(1) ascertain or identify ecological rules, or knowledge, pertinent to the geographic study 

area; (2) identify classification problem areas from the ecological knowledge acquired about 

the study area; (3) convert study area knowledge into EF-THEN-ELSE rule structure and; (4) 

convert LF-THEN-ELSE statements into an ERDAS Imagine spatial modeling environment 

using modified tools included in Imagine. Steps within this sequence were briefly examined 

and are provided later. Map corrections were applied using a prototype methodology and the 

accuracy o f a new landscape classification map was reassessed in terms of changes in the 

area o f cover type. Pixel classes changed as a result o f  the new model were verified from 

field information. Multiple rules can easily be developed for any study site, but in
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preference, a single spatial model was created to show that individual rules can be 

incorporated into one large combined model.

The integration of user-defined knowledge that specifically targeted particular classes 

based on the spatial strength o f neighboring pixels was not considered. Rather, rule 

development was developed from field expertise and related literature sources (Scott, 1991; 

Mitsch and Gosselink, 1993; TNS, 1995). Pixels that were incorrectly classified into 

vegetation landscape classes, inconsistent with an expected ecological spatial distribution, 

were corrected based on user-defined rules acting upon the spatial relationships o f the 

vegetation data alone. A low-pass 3-pixel by 3-pixel filter was applied as a preliminary 

processing step, prior to the ecology-based rule model, to remove any spurious, unwanted 

"speckle" from the landscape classification.

The landscape classes derived from image exploitation included 9 vegetation types, 

sand, and water. Vegetation was classed at both the species and community level. A 

supervised classification using a maximum likelihood classifier algorithm was used to obtain 

the class maps. A map of classes was considered to be the final product. Application of a 

rule-based correction model aimed to improve each of the classifications provided. The class 

themes were:

/. Spartina patens (salt meadow hay);

2. Spartina alterniflora (cordgrass);

3. Myrica cerifera (wax myrtle) constituting high density shrub;
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4. Iva frutescens (marsh elder) and Baccharis halimifolia (groundsel tree) together 

constituting low density shrub;

5. Typha angustifolia (cattails);

6. Phragmites australis (common reed);

7. Pinus taeda (loblolly pine) dominant within the maritime forest;

8. Ammophila breviligulata (dune grass);

9. Juncus roemerianus (black needlerush);

10. Sand;

11. Water.

Four principal steps defined the prototype methodology for including knowledge 

rules into a post classification correction. The study site description presented earlier 

provided all the background information necessary to formulate general knowledge rules. 

This background knowledge defined the first step. Second, six independent mis- 

classification problem areas were identified from the class map using the ecological 

knowledge acquired about the study site in step one. Third, all classification problems were 

translated into computer programming language, with EF-THEN-ELSE statements compiled 

for the correction o f the mis-classified pixels. Fourth, ERDAS Imagine’s Spatial Modeler 

module was adopted for incorporating conditional corrective statements compiled in step 3, 

together with existing image processing algorithms for neighborhood size and focus majority 

filters. Spatial Modeler provided a suitable framework for rule development that would 

make the modeling technique available to other users and would facilitate modification o f the 

rules in the future. Ultimately, a single large spatial model was written that incorporated all
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six corrections identified. The changes could also have been done as 6 independent spatial 

models. Corrections were tested individually on small segments o f the map, followed by the 

integration o f individual models into the large comprehensive model that acted sequentially 

upon and updated corrections to the entire landscape map.

Results

Problems in the vegetation classification map were identified by examining each 

landscape class, one at a time. Several factors were considered during this visual assessment 

of landscape class accuracy, including daily tidal inundation, expected location o f vegetation 

along beach side dunes, anticipated neighboring vegetation classes, and implications of 

shadows from the forest. For efficiency in the project, six representative problem areas were 

selected and examined for post-classification error correction. Additional difficulties with 

the original classification were discovered that could have been addressed (e.g., forest 

adjacent to low density shrub, P. australis within the forest, and S. altemiflora adjacent to 

forest) but were not selected for correction to simplify the investigation.

The first issue for correction was erroneously classified pixels of high-density shrub 

spuriously located within the S. altemiflora. High-density shrub vegetation would not be 

found immediately adjacent to the lower marsh community without an intermediate high 

marsh community. Spartina altemiflora is typically a monotypic community without 

interspersed competing species. Therefore, conversion o f  high-density shrub pixels to S. 

altemiflora was warranted. A second problem was tracts o f  low-density shrub pixels directly 

adjacent to maritime forest pixels. High-density shrub community would be expected
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between these two communities. Accordingly, the question was not whether these pixels 

should be changed to high-density shrub, but rather, which vegetation class was incorrect and 

in need of conversion. It was the maritime forest classified pixels that needed to be changed 

based on information from two sources available at earlier image processing steps: first, a 

low transformed divergence score for class separability was recorded between high density 

shrub and maritime forest and a high score for separability between low-density and high- 

density shrub classes; second, a low producers accuracy assessment score (columnar scores 

based on reference field data) was computed for high density shrub class attributable to an 

over-classification of the maritime forest class. Accordingly, maritime forest adjacent to 

low density shrub needed to be converted to high-density shrub. The width o f  pixel 

conversion was determined to be 10 meters based on observations in the field. A third 

correction needed was the elimination o f A. bevigulata in areas o f  the back-bay, which was 

located within the S. altemiflora class. Dune grass was not expected in the lower back marsh 

between the barrier island and the main-coastline, but rather along the island's beach front 

dunes or the drumstick-shaped, accreting end of the island where dune formation was 

prevalent. A fourth correction was to eliminate small pockets o f S. altemiflora identified in 

upland areas. A lack o f meandering creeks that occur only in the silt and clay of the lower 

marsh communities and the adjacency o f S. altemiflora pixels to upland vegetation were the 

determining factors in the need for correction. Sand was eliminated from the sound-side S. 

altemiflora marsh as a fifth correction. This is an area o f silt and mud. Lastly, pixels were 

incorrectly classed as S. altemiflora within beach-front coastal dunes probably due to the 

effects o f shadows from the maritime forest.
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Corrections required to improve the landscape classification were coded into logical 

IF-THEN-ELSE statements. The following conditional statements satisfy the correction 

needs cited above.

1) IF vegetation class = high-density OR low-density shrub pixel AND the pixel is 

adjacent to S. altemiflora pixel, THEN reclassify the pixel as S. altemiflora, 

ELSE do not change the pixel class.

2) IF vegetation class = low-density shrub pixel AND the pixel is adjacent to 

maritime forest pixel, THEN reclassify the maritime forest pixel as high-density 

shrub within a buffering distance o f 10 meters (or approximately 7 pixels), ELSE 

do not change the pixel class.

3) IF vegetation class = A. bevigulata pixel AND the pixel is adjacent to S. 

altemiflora pixel, THEN reclassify the pixel as S. altemiflora, ELSE do not 

change the pixel class.

4) IF vegetation class = S. altemiflora pixel, AND the pixel is adjacent to S. patens, 

OR T. angustifolia, OR P. australis, OR low-density shrub, OR high-density 

shrub, OR maritime forest, AND the S. altemiflora pixel originates from within a 

small isolated pocket o f S. altemiflora pixels whose maximum width is less than 

or equal to 20 pixels**, THEN reclassify the pixel as S. patens, ELSE do not 

change the pixel class.

5) IF vegetation class = Sand pixel, AND the pixel is adjacent to S. altemiflora 

pixel, THEN reclassify as S. altemiflora, ELSE do not change the pixel class
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6) IF vegetation class = S. altemiflora pixel, AND the pixel is adjacent to sand pixel, 

THEN reclassify the pixel as sand, ELSE do not change the pixel class.

**Small isolated pockets o f S. altemiflora were defined as 20m in width or less. The 

expectation was that 20m was sufficiently large to eliminate all unwanted S. 

altemiflora pixels, while still maintaining a reduced existence o f legitimate S. 

altemiflora. All remaining legitimate S. altemiflora was then restored, or grown 

back, to its original size by reversing this correction step by 20m.

The ERDAS Imagine Spatial Modeler module allowed for existing algorithms to be 

easily combined together. Functionality to accomplish the IF-THEN-ELSE conditional 

statements were effected within existing capabilities of Imagine. The sequence in which 

models were started and completed was important. Corrections that affected the smallest 

number o f pixels were completed first, and corrections that affected the greatest number of 

pixels were best completed last to make the process efficient. When small areas of 

misclassified pixels were not eliminated early in the sequence o f model correction steps, they 

were invariably acted upon by following steps in the model that magnified their existence.

An approach that minimized this difficulty was the identification o f all corrections needed for 

post-classification at the outset, ordering the identified corrections into a smallest-to-largest 

sequence, and implementation of the rule-based modeling steps in the equivalent order.
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It was tempting to address the elimination o f unwanted pixels adjacent to multiple 

landscape classes in the hope o f  reducing the number o f modeling steps necessary for 

correction. However, to do this in one step made the converse process o f returning legitimate 

pixels to their original class size impossible. It was not possible to know initially which 

class(es) needed to be restored to their correct size. When changes were completed 

incrementally, one at a time, this problem was solved. Removal o f  pixels was sensitive to the 

size o f  the neighborhood window and type o f filter employed. A custom-defined “majority 

filter” was applied that assigned each pixel into a vegetation class based on the majority of 

pixels belong to a vegetation class within the window. The filter window acted upon only 

those desired classification corrections identified by the IF-THEN-ELSE conditional rule 

statements. These rules were easily recoded and incorporated into the Focal Use- Majority 

Filter model through "USE-at" and "APPLY-at" options, enabled the targeting of corrections 

while maintaining the integrity o f  the remainder of the classification.

The final ERDAS spatial model integrated fifteen custom developed filters to address 

specific land cover classification errors identified from an imagery-derived map. A segment 

o f the rule-based model designed under the Spatial Modeler is given as Figure 1 and an 

example o f the functional syntax o f  the model is provided in Figure 2. The model may be 

copied, modified, and re-used.

Change attributable to model correction was assessed by identifying all pixels that 

were different from the original classification and model-corrected classification. A 

difference map was created from these changes. The percentage o f  pixels changed was
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computed. Changes to the original vegetation classification map were substantial. Over 20 

per cent (173 hectares out of a total o f 850 hectares) o f the land cover classes were re

classified by the ecology-based rules. Table 1 provides an example o f 101 randomly located 

sampling points that coincide with changed landscape pixels. Fifty-one sample points were 

changed from class 7 (maritime forest) to class 4 (low-density shrub); thirteen sample points 

were changed from class 4 to class 3 (high-density shrub); and ten points from class 7 to 

class 3. The remaining 26 sampling points were evenly divided across 10 additional land 

cover class changes.

Vegetation classes were determined at each o f  the 101 sample locations for the 

original and post-classification map. Each change was evaluated against the modeling rules 

that were established to correct for errors. All changes between the original and post

classification samples were arrived at justifiably as a result o f the rules. Total area for each 

landscape class was recorded for the pre- and post-classification correction modeling. An 

increase in area occurred for sand (3ha), T. angustifolia (3ha), low-density shrub (45ha), 

high-density shrub (24ha), and S. patens (12ha). Decreases in area were observed for A. 

breviligulata (6ha), maritime forest (64ha), and S. altemiflora (16ha). Changes in areas did 

not occur for P. australis, water, or J. roemerianus, as there were no rules to adjust these 

classes.

Several derivations of the imagery—derived vegetation map are provided for 

comparison. Figure 3a is the original multispectral imagery over Parramore Island shown in a 

false-color 4-3-2 band representation. Imagery was collected on May 30, 1999, from 1155
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to 1257 local solar time. Eleven flightlines were flown south to north at an altitude o f 

approximately 3,000 meters above mean sea level, which resulted in a nominal pixel size o f 

approximately 1.5 meters. Figure 3b is the initial classification o f the land cover classes 

from the raw imagery, prior to the application o f  any rule-based classification to improve the 

results. Figure 3c shows the resulting map compiled after running the spatial model and 

making corrections to the original class map. Legends for Figures 3b and 3c identify area in 

hectares o f each class change. Increases and decreases in hectares correspond with the 

requested model corrections to the original classification. The spatial pattern is more 

reasonable, with speckle and misclassified pixel areas removed. The homogeneity typically 

found in vegetation complexes o f the barrier island are evident in Figure 3c; this was not the 

case prior to the corrective actions applied to Figure 3b. Finally, Figure 3d is the difference 

map between Figures 3b and 3c, depicting those pixels affected by the incorporation o f the 

rules. The difference pixels in Figure 3d present definite spatial pattern, oriented in a 

southwest to northwesterly trend, probably attributable to the distinctive geomorphology and 

corresponding vegetation zones found on the barrier island. Location o f likely ecotones 

between maritime forest and high-density shrub communities are observable in this map also.

Changes to each class map were examined by enlarging the pre-and post-correction 

rule results. Figure 4 shows high- and low-density shrubs existing within a S. altemiflora 

community (original classification) and the subsequent removal o f these shrub pixels from 

this lower marsh (corrected classification). Much o f this erroneous classification can be 

attributed to a collection of wrack (dead grass and reeds) that had accumulated in small 

pockets o f the lower marsh during earlier tidal events. Figure 5 shows A. breviligulata and
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sand patches interspersed within a S. altemiflora community (original) and the removal of 

these pixel classes from the lower marsh (corrected). Sediment is typically silt or mud, and 

not sand, and beach grass would not survive in this halophytic environment. Figure 6 shows 

small isolated S. altemiflora patches within S. patens and maritime forest immediately 

adjacent to low density shrub (original) followed by the removal o f S. altemiflora patches 

and with the forest edges replaced by additional high density shrub (corrected). Figure 7 

demonstrates an incorrect classification o f S. altemiflora in the near-shore beach-front 

(original) followed by its substantial reduction (corrected).

Depending on the purpose o f  the user o f the landscape land cover information, one 

might envisage adjusting the classes to which pixels belong to give certain classes more 

emphasis. In either case, the aim should be to change only those pixels deemed to be in error 

and not to affect those that are correctly classified. Selection o f  an appropriately sized 

neighborhood window ensured that correct pixels were not inadvertently eliminated and 

incorrectly assigned pixels were the only ones permanently converted to an alternative, user 

defined class. By correcting misclassified pixels to the correct class and obtaining the correct 

aerial extent of this class, restoring legitimate pixels to their original aerial extent was 

achieved by always either adding the pixels back using an equivalent window size to that 

used for elimination of pixels or, vice versa, eliminating pixels by using an equivalent 

window size used for growth o f  pixels in a preceding model step. For example, IF-THEN- 

ELSE conditional statement number four removed clumps of mis-classified pixels that were 

20m or less in size from the S. altemiflora class. Once mis-classed pixels were eliminated,
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legitimate pixels were returned to their original aerial extent by reversing the proceeding step 

and growing pixels back.

Discussion

As Harris (1995) suggested, areas with well-defined land cover types, such as a 

coastal zone, are ideal for post classification deterministic rule development. The Parramore 

Island study site presented many general ecological deterministic rules that could be 

modeled. Rules were easily defined and implemented and the impact on the classification 

was obvious. Ten years ago Ton et al (1991) suggested that adoption o f post-classification 

spatial guidance rules for improving the accuracy o f land cover classifications would lead to 

new, unrecoverable problems. Thus, the ability to develop legitimate rules was questioned. 

Nevertheless, the possibilities for post-classification rules have been demonstrated in this 

work.

Hutchinson (1982) attempted to improve image classification using additional spatial 

data, such as thematic maps and other landscape characteristics. He grouped classification 

processes into three methods: pre-classification stratification, classifier modification, and 

post-classification sorting. Improvements in classification accuracy were observed for each 

of these methods. Despite this favorable finding for post-classification, deterministic rules 

were thought o f  as lacking in sophistication and crude in approach (Hutchinson, 1982). 

Perhaps that is what makes them so attractive and available for ready implementation by non

modelers. Hutchinson’s disclaimer was that if  post-classification was used, reliable ancillary 

data and the rules that were developed should match the natural situation closely. For
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Parramore Island, the ecological rules model developed herein fulfills Hutchinson's 

requirement.

In concurrence with Kim’s (1996) statement on contextual classification techniques, 

land cover types o f spatially neighboring pixels are strongly related. Hubert-Moy et al (2001) 

considered that contextual classifiers worked especially well in summer environments 

compared to other available standard classification techniques, such as discriminant analysis, 

maximum likelihood classifiers, and minimum distance. If a priori contextual tools can be 

applied to improve landscape classification, they should be used. Abkar et al (2000) used a 

type o f contextual classification method by applying available knowledge to segment data 

into classes. This environmentally specific work constrained the classification o f the 

dependent variable to the existence o f soil, elevation, and slope characteristics. Abkar’s work 

was similar to that completed at Parramore in that the user and decision maker have taken 

control o f the output by adjusting the model parameters. For both this and Abkar’s work, 

aerial extent of thematic classes has been expanded and shrunk to increase or decrease at the 

expense o f neighboring pixels. Abkar’s work was not coded using a commercial image 

processing software package for later exploitation by other users as has been done here.

The prototype spatial model developed for this project may be modified for 

alternative study sites and environments. Additional landscape data sets were not needed to 

run the model; only the vegetation classification map was included and acted upon within the 

model. Other approaches for improving accuracy with post-classification that include 

Boolean-like integration o f multiple geographic information system data sets for improving
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the output (Welch et al, 1992; Harris and Ventura, 1995) or decision-tree approaches that 

require complementary landscape data (Lees and Ritman, 1991) have not been discounted by 

the model suggested herein. A key feature of this model is the ease with which rules may be 

developed and implemented for use by untrained image analysts. Tools that foster the 

integration o f knowledge from the landscape ecologist are needed within the remote sensing 

community (Ehlers, 1995).

The process of developing rules for a barrier island complex could be adapted to a 

different physiographic environment, but the identification o f rule sets would likely not be as 

easily constructed. The barrier island environment has a well-defined sequence of vegetation 

that is elevation and water related. Rule development for Parramore Island specifically 

considered the level of landscape classification that was desired and feasible for 

interpretation from the available image source. Imagery-derived vegetation classes for this 

project was a hybrid of Anderson Level II (e.g., maritime forest, shrub communities, water) 

and Level III (e.g., species level vegetation and sand) (Skidmore and Turner, 1988). The 

narrow bandwidths (25nm) and high spatial pixel resolution (1.5m) supported this level of 

mapping. Post-classification rules should be appropriate to support the level o f land cover 

classification achievable from an image source. For example, rules that ascribe structural 

differences expected between selected plant communities would probably not be helpful for 

correcting a basic land cover classification map.

A modified future version o f spatial model proposed herein might include the use o f 

spatial constraints place upon the landscape classification as determined from geostatistical
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variogram model parameters. The variogram provides information about directional trends 

and spatial variability in the landscape cover classes would be o f  assistance in improving the 

final classification.

Conclusion

The purpose of this work was to develop a methodology in which ecology-based 

knowledge could be easily incorporated into post-classification landscape cover type 

corrections. A prototype method was applied in a spatial environment that showed that it 

was possible to incorporate ecological understanding o f a study area into a model with 

conditional rules. Flexibility o f rule construction allowed for the targeting o f specific 

landscape features and close interaction by the analyst. The ability to select neighborhood 

window sizes and filter class options to facilitate the elimination, or incorporation, o f pixels 

into classes was critical.

There were several advantages to the post-classification prototype: the model was 

developed using commercial “o ff the shelf’ image processing software; the software can be 

adapted to easily correct a variety o f land covers by modifying class codes within spatial 

model filters; the corrections were integrated to create a single map at the end; the model is 

portable and can be used for another study site by generating appropriate ecological rules; 

and a map reviewer can apply known or learned knowledge about a study site into the 

classification process. Knowledge for this project originated from field experience and 

literature searches, but could have originated from a source such as high-resolution air photo
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interpretation where visual cues provide an immeasurable opportunity for improved 

classification.

The conversion o f pixels based on an ecological expectation o f land cover type 

adjacency was successfully demonstrated. An image analyst was able to define corrections 

to the image classification and recoded those corrective actions into conditional statements 

that became components of a larger spatial model. Over 20% (173 o f the total 850 hectares) 

o f initial land cover classification pixels were converted to alternative classes based on 

ecology-based rules.

An overall plan for improved vegetation classification derived from imagery might 

best include a combination of a) digital multi-spectral imagery for automated processing, b) 

air photo imagery (1:20000 scale and larger) to assist in gathering knowledge from the 

photographic interpretation process, c) strategically located field-truth and testing plots, and 

d) implementation of an ecology-based spatial model for post-classification correction. A 

recommendation for future work includes verification in the field o f  the accuracy o f ecology 

based corrections as well as a spatial evaluation of the changed pixels (refer to Figure 4) 

through a geostatistical analysis.
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Figure 1. Sample segment o f  a larger integrated ecology-based spatial correction model 
developed with ERDAS Imagine, where each model output builds upon the results o f  the 
previous correction until a final corrected map product is derived.
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Figure 2. Sample syntax as applied to a focal majority function to target error correction of 
user-specified class themes, developed with ERDAS Imagine software.
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Figures 3a - d. Multispectral imagery has been acquired and processed into classified 
imagery to demonstrate the impact o f integrating post-classification rules. The images in 
figure 3 are shown in progressive order in the steps expected for correction and analysis.

Figure 3a is the original 4-channel multispectral imagery of Parramore Island shown in a 
false-color 4-3-2 band representation. Imagery was collected on May 30, 1999, from 1155 
to 1257 local solar time. Eleven flight lines were flown south to north at an altitude of 
approximately 3,000 meters above mean sea level, which resulted in a nominal pixel size of 
approximately 1.5 meters.

Figure 3b is an initial classification o f land cover classes from the raw imagery, prior to the 
application o f any rule-based classification to improve the results. Speckle and 
misclassifications are visually evident.

Figure 3c shows the resulting map compilation after running the spatial model and making 
corrections to the original class map. Respective legends for Figures 3b and 3c identify the 
changes to class area in hectares. Spatial pattern is more reasonable with speckle and 
misclassified pixel areas removed in Figure 3c. Homogeneity typically found in vegetation 
complexes o f the barrier island are evident in Figure 3c.

Lastly, Figure 3d is the difference map between Figures 3b and 3c, depicting those pixels 
changed by the incorporation o f the rules. The difference pixels in Figure 3d present definite 
spatial pattern, oriented in a southwest to northwesterly trend.
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Figure 4. Classification maps o f  cover classes at Parramore Island depicting results from:
(a) Pre-corrections, with high and low-density shrubs (teal and aquamarine color) located 
within the S. altemiflora community (maroon color), and (b) Post-corrections, with high and 
low-density shrubs removed from S. altemiflora.
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Figure 5. Classification maps o f cover classes at Parramore Island depicting results from:
(a) Pre-corrections, with both beach grass (yellow color) and sand (grey color) located within 
the S. altemiflora community (maroon color), and (b) Post-corrections, with beach grass and 
sand removed from S. altemiflora.
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Figure 6. Classification maps o f cover classes at Parramore Island depicting results from: 
(a) Pre-corrections, with both patches o f S. altemiflora (maroon color) co-located within S. 
patens (brown color) and maritime forest (green) adjacent to low- density shrub without a 
high-density shrub buffer, and (b) Post-corrections, with S. altemiflora removed and forest 
converted to high density shrub.
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Figure 7. Classification maps o f  cover classes at Parramore Island depicting results from: (a) 
Pre-corrections, with S. altemiflora (maroon color) located within the near-shore beach front, 
and (b) Post-corrections, with S. altemiflora substantially reduced but not yet eliminated. 
Follow-up corrections with forest adjacency are warranted.
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Chapter 4 to Chapter 5 Transition

Post-classification results documented in this past chapter describe a potential for 

producing rapid landscape classification based on sound ecological knowledge. Chapter 

5 discusses the development o f empirical models that use community based vegetation 

classifications as derived from high-resolution image sources as a surrogate variable for 

estimating a) soil type, b) soil compaction rate, and c) decimeter level elevation ranges. 

The predictive model relies on the accuracy o f the vegetation characterization for the 

model to be dependable. Field data and coincident imagery was acquired across a 

Virginia coast barrier island. These data were used to assess statistical associations 

between categorical vegetation communities and estimated soil and elevation spatial data. 

While the findings of this chapter will not suggest replacement o f  time-tested field 

collection techniques for accurate mapping o f soil properties, results o f  this work in the 

barrier island are promising for a rapid large-area approach tool for mapping soil type and 

strengths. This is true for the mapping o f lower, upper and non-tidal areas based on 

vegetation and their observed preference for unique elevation strata.
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Abstract

Barrier islands are among the earth’s most dynamic environments.

This manuscript presents the relationships between vegetation and a) 

elevation, b) soil type, and c) soil compaction strengths on a Virginia 

eastern shore barrier island. Measures o f association tests suggest 

that barrier island vegetation is a valid variable for estimating 

elevation range in centimeters and soil properties: Vegetation type 

and categorized elevation range (x2 = 120, p-value = 0.0059, d.f. =

84, and V = 0.99); vegetation type and soil type (x2 = 0.93, p-value =

0.0000, d.f.= 21, V = 0.86); vegetation type and soil strength at 

depths o f 30cm (x2 = 124, p-value = 0.0000, d.f. = 82, V = 0.96) and 

46cm (x2 = 124, p-value = 0.0000, d.f. = 88, V = 0.96). Vegetation 

classification was used to estimate these ecological variables across 

the entire barrier island. Vegetation, therefore, became a surrogate 

variable for prediction.

Introduction

The terrestrial part o f the coastal zone is subjected to continuing dynamic change. 

The barrier islands of the mid-Atlantic United States are particularly vulnerable to natural 

environmental changes. Over short distances there are striking gradients of plant salinity, 

soil properties, climate, and consequently in community composition, structure, and 

physiognomy (Christensen, 1988). These differences are interrelated. For example, soil 

processes and geomorphological processes are linked together within an environmental
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landscape based on factors such as parent material, elevation gradient, and hydrologic 

weathering (Ruhe and Walker, 1978; Gerrard, 1991). The dynamic geologic history o f the 

Atlantic barrier islands is well established, showing a landward shift from their original 

positions approximately 100 kilometers east over the last 18,000 years (Kraft et al, 1973; 

Bonan & Hayden, 1990; Hayden et al, 1991). Increased frequency and intensity of storms 

might have accelerated the erosion o f some o f the northern barrier islands o f up to 13 meters 

per year in some areas (Dueser, 1990). Rapidly changing ecological conditions have 

inhibited the compilation o f accurate records of these islands (Oertel et al, 1994). Expedient 

and cost effective methods for large area mapping are needed in coastal environments to 

assist resource managers to address issues such as sea level rise (Christensen, 1988; Nicholls 

et al, 1998; Jorgenson and Ely, 2001), loss o f plant diversity (Garcia-Mora et al, 2000;

Wood, 2001), and accumulation o f pollutants (Knight and Pasternack, 2000). Land cover is a 

key input for decision support models and land management decisions (Cihlar et al, 2000). 

Remote sensing using moderate resolution (30m pixels) Landsat Thematic Mapper imagery 

has been used to classify land cover classification in the coastal areas, under the auspices o f 

the National Oceanic and Atmospheric Administration’s (NOAA) CoastWatch Change 

Analysis Project (C-CAP) (Jensen et al, 1993; Klemas et al, 1993).

Elevation and soil data have been acquired for many barrier islands from the US 

Geological Survey and Natural Resource Conservation Service respectively, however, data 

are still required. Several examples of data need can be cited. First, resolution of elevation 

data that is needed to support modeling and decision making in barrier islands is 

inappropriate with only meter-level vertical accuracy and a 30-meter interval between
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observations (Kenward et al, 2000). A goal to map at an accuracy o f  +/-10 centimeter 

vertical accuracy for nearby Assateague Island (Krabill, 2000) could not be achieved with 

conventional elevation data. Remote sensing offers the only possibility to produce a time 

series o f elevation surveys o f sufficient density for monitoring (Krabill et al, 2000). The 

present elevation data do not enable the analysis o f centimeter-level hydrologic relations that 

exist between vegetation communities and tidal sequences in the barrier islands. Second, 

interpolation from soil samples at point locations to provide predictions at unsampled 

locations is a conventional mapping practice that introduces inevitable error. The reliability 

o f  the predictions decrease as distance from sample locations increase (Cromley, 1992). 

Third, since barrier islands are dynamic environments noted for rapid ecological change, 

efficient monitoring methods are needed to document the present changes (Hayden et al, 

1995). Frequently, updated high-resolution data are needed to satisfy the needs o f the users 

(Vogelmann, et al, 2001). Present methods o f  data collection (i.e., Interferometric Synthetic 

Aperature Radar (EFSAR), Differential Global Positioning System (DGPS) survey, and 

detailed sampling o f soil data designed to minimize interpolation distances) can be 

prohibitive in cost (Lyle, 1999; Atkinson, et al, 2000). A comprehensive description of the 

environment will be beneficial and should help to alleviate the unavoidable difficulties o f the 

past in data acquisition (Huggett, 1995). Monitoring of temporal change is critical for coastal 

zone management, and information about the amounts and types o f change can be obtained 

from image data (Michalek et al, 1993). Management/monitoring o f  vegetation communities 

for stress, induced by drought, long-term inundation, naturally occurring senescence, or 

infestations, using remote sensing infra-red reflectance (Rinker, 1994) should become part of 

every resource manager’s toolbox.
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Barrier island dune, forest, and wetland complexes are unique geomorphological 

features that contribute to distinctive vegetation zones (Kraft et al, 1973; Bonan & Hayden, 

1990; Hayden et al, 1991). They are a direct response to the environmental conditions such 

as salinity, inundation (Mitsch and Gosselink, 1993), and tidal range (Frey and Basan, 1974). 

Chesapeake Bay-side salt marsh communities are characterized by regularly inundated tall 

and short forms o f monotypic smooth cord grass (Spartina altemiflora, Loisel) grading at 

higher elevations to complexes o f mixed salt grass (Distichilis spicata, Greene) and salt 

meadow hay (Spartina patens, Muhl) in the high marsh that are less influenced by daily tides 

(Christensen, 1988). Marsh plant diversity increases with increased distance from salt-water 

inundation. Homogeneous stands o f cattails (Typha angustifolia L.) and common reed 

{Phragmites australis, Cav.) can be found growing within upper valley marshes. The high 

marsh also supports low-density, short marsh elder (Iva frutescens L.) and groundsel-tree 

(Baccharis halimifolia L.), which co-exist with an herbaceous component that includes S. 

patens and T. angustifolia (Bourdeau and Oosting, 1959). A higher density shrub community 

is characterized by a transition from elder and groundsel-tree to taller (> two meters) and 

more closely spaced wax myrtle (Myrica cerifera L.). Dune systems support maritime 

forests dominated by loblolly pine (Pinus taeda L.), and less frequently black cherry (Prunus 

serotina Ehrh.), southern red cedar (Juniperus virginiana L.), and holly (Ilex opaca Ait.). 

Dune grass (Ammophila breviligulata Fem.) exists within the coastal dunes o f the sandy 

beach zone. Nomenclature for the flora found at Parramore comes from Kartesz (1994). A 

comprehensive description o f a Virginia barrier island ecosystem is given in McCaffrey and 

Duesser (1990) and Scott (1991).
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Stable vegetated transverse dunes develop perpendicular to prevailing offshore winds 

in environments with sufficient available sand. Dune crests are asymmetrical in shape with a 

consistently less steep slope on the windward side (Strahler, 1962; Greenland and de Blij, 

1977). In the formation o f a transverse dune, a wavelike pattern of wind erosion and 

deposition results in the development of a steep slip face on the leeward side o f the dune 

(Chorley et al, 1984). Addition o f sand to the steep slip face, which typically has an angle of 

about 30-degress, will cause the dune to migrate (Davis, 1996). An understanding o f dune 

formation aided in the designing of a technique to estimate crest height and location when 

concealed by maritime forest.

Barrier island soil type is affected by tidal and aeolian transport of sediment (Davies, 

1973). Grain sorting occurs in sediments as daily and storm-driven tides relocate silt, clay 

and detritus throughout the marsh interior. Mud trapped in the marsh may originate from 

additional sources such as settling, flocculation o f clays, formation of organoclays, and 

biogenic sediment trappings (Frey and Basin, 1974). Aeolian transport o f beach sand has 

contributed to dune formation and migration. Sediment stability within a marsh area is 

related to the rooted plants and the shear strength o f the resident sediments. Soil strength 

varies across a marsh environment (Frey and Basan, 1974).

Relationships between ecological variables have been intensively investigated (Milne, 

1935; Grace, 1974; Walker, 1989; Moore, et al, 1993; Gessler et al, 1995; Huggett, 1995). 

Catenas were introduced by Milne (1935) to describe the lateral variation o f soil on hill
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slopes. Milne was also the first to recognize a vegetation catena associated with a soil catena 

(Huggett, 1995). Others have related soil with landform and plant communities (Eyre, 1968; 

Brady, 1974). Grace (1987) noted that plant species were limited by climate, soil, 

topography and competition, but suggested that identifying interrelated variables would incur 

costly and time-consuming field experiments. Walker (1989) investigated eight vegetation 

stand types grouped according to moisture regimes and micro scale variations in topography. 

Moore et al, (1993) looked at the idea o f the spatial prediction o f soil derived from slope and 

wetness indices. Quantitative soil landscape models were proposed for terrestrial 

environments that relied heavily on the use of available ecological variables, especially 

elevation data, as independent predictors (Gessler et al, 1995). Huggett (1995) also 

investigated soil occurring within distinctive classes based on relative topographic location. 

Land cover will tend to exhibit spatial patterns when determined by landform and climate 

(Steele, 2000). Chang and Islam (2000) analyzed the relationship between soil texture, 

temperature, and moisture, with moisture and temperature collected from passive microwave. 

Ecological relationships in nature are not random; structure and pattern become self-evident 

as the spatial scales o f investigation are changed (McBratney and Webster, 1983).

Remote sensing is a promising technology for characterizing barrier island ecology. 

Inventory is considered a necessary starting point for resource management decision-making 

(Lyle, 1999). As the ground detection resolution o f satellite and airborne imagery continues 

to increase, researchers should investigate new possibilities that these resources provide for 

plant species-level mapping, structural vegetation change, and habitat change mapping. 

Remote sensing began to show promise almost twenty years ago as a resource management

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5-7

tool when a study o f transverse dune morphological structure showed a positive correlation 

between remotely sensed measures o f  dune length, width, and distance between parallel dune 

crests (Chorley et al, 1984).

The purpose of this study was to investigate the statistical association between 

vegetation community types that were deemed to be capable o f  classification from remotely 

sensed source and: centimeter-level elevation, soil type, and soil compaction strength. As 

designated in earlier work by Smith (1996), remotely sensed vegetation classes are 

considered to be discrete units, contrary to their conventional treatment as continuous data 

due to compositional change over an environmental gradient. Discrete vegetation 

classification classes comprise part o f  larger classification schemes adopted by several 

United States federal government agencies: US Geological Survey Land Use Land Cover 

Classification System; US Fish and Wildlife Service Wetland Classification System; and the 

National Oceanic and Atmospheric Administration CoastWatch Land Cover Classification 

System, and these data are considered to be interpretable from remote sensing source 

(Jensen, 1996). Ultimately, field-based empirical relationships established between 

vegetation type and: elevation, soil type and soil compaction strength were applied to against 

vegetation classes identified from imagery.

Why would this be an important step in resource management? The use o f vegetation 

community classes derived from imagery with a high spatial resolution to estimate 

centimeter-level elevation, soil type by category, and soil compaction strengths at 

incremental depths, would introduce an alternative, perhaps more affordable method o f data
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collection. Land managers need to know the spatial distribution o f vegetation, soil, and 

elevation data to manage effectively (Wheatley et al, 2000). Complete area coverage 

afforded by the acquisition o f imagery, classification o f vegetation, and subsequent 

estimation of other ecological variables, would provide a level of spatial coverage otherwise 

unattainable from conventional sample plot-based field surveys. Establishment o f empirical 

ecological relationships between vegetation community and elevation, or vegetation and soil 

properties, would assist land managers achieve a better understanding and ability to monitor 

change in the barrier island environment.

The following hypotheses were tested with a selected combination o f nonparametric and 

multivariate statistics:

• Vegetation / elevation association, tested at the 95% confidence level:

H0 = that elevation was the same regardless o f vegetation community.

Ha = that elevation varied because o f vegetation community.

• Vegetation / soil type association, tested at the 95% confidence level:

H0 = that soil type were equivalent regardless o f vegetation community.

Ha = that soil type varied because o f vegetation community.

• Vegetation / soil compaction association, tested at the 95% confidence level:

Ho = that soil compaction strengths, tested at 0cm, 5cm, 15cm, 30cm, and 46cm

depths, were the same regardless o f vegetation community.
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Ha = that soil compaction strengths were different because o f vegetation 

community.

Methods 

Study Site

Linear barrier islands form a chain trending northeast from Long Island, New York, 

to southwest at the North Carolina Outer Banks (Schwartz. 1982). Their shorelines are long. 

The study site for this project was Parramore Island o ff the eastern shore o f Virginia (Figure 

1). It is the central island o f this chain. Since the late 1980’s Parramore Island has been 

privately owned and access has been restricted. No permanent human population inhabits it 

and activities such as agriculture, hunting, or logging are prohibited. The island orientation 

is approximately 15 degrees east o f north and it has a classic drumstick shape indicating 

rotational instability (Haynes, 1979). The island is approximately 10-kilometers long by 1.5- 

kilometers wide, and it is separated from the mainland by a series o f  bays, salt marshes and 

small tidal creeks. Parramore exhibits classic dune and valley geomorphology with (from 

seaward) a sandy beachfront, dune / ridge sequence, maritime forest, inland marsh, and a 

bay-side marsh complex (Davies, 1973).

Imagery data acquisition

Digital multispectral imagery was obtained over the Parramore Island study site on 

May 30, 1999 (unpublished data) from a small, lightweight 4-camera imaging system fitted 

with 25 nanometer wide bandpass interference filters centered at 450 (blue), 550 (green), 650 

(red) and 800 (near infra-red) nanometer band centers. Spatial ground sample detection was
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approximately 1.5m. The camera system, named the Computerized Airborne Multi-camera 

Imaging System (CAMIS), was purchased in 1999 by the U.S. Army Topographic 

Engineering Center as a beta test system from FlightLand Data, Inc, located in Boston, MA. 

A false color image composite o f the multispectral imagery is found at Figure 2a.

Vegetation

Forty-one sample sites were selected randomly from the imagery for field 

classification using 10m diameter sample plots. Dominant herbaceous and shrub vegetation 

was classified at the species level. All large woody vegetation was classified in a general 

category as maritime forest. These sites were used for imagery classification o f vegetation 

and the development o f empirical relationships with coincident elevation, soil type, and soil 

compaction. A discrete vegetation community class was identified in the field. Also, 

percentage of dominant vegetation cover was assigned to each sampling site as determined 

by averaging two independent observations. Dominant vegetation cover percentage was not 

a variable that was readily interpretable from remotely sensed data. Field data were 

classified into eight vegetation categories:

1. Spartina alterniflora (cordgrass);

2. Spartina patens (salt meadow hay);

3. Typha angustifolia (cattails);

4. Phragmites australis (common reed);

5. Ammophila breviligulata (dune grass);
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6. Iva frutescens (marsh elder) and Baccharis halimifolia (groundsel tree, together

constituting low density shrub);

7. Myrica cerifera (wax myrtle, constituting high density shrub); and

8. Pinus taeda (loblolly pine dominated maritime forest).

Statistical tests of categorical association

Elevation, soil type, and soil compaction variables were each evaluated for 

association with vegetation community using Pearson’s Chi-square {y}) coefficient of 

association and Cramer's V, determined using Statistica software (StatSoft, Inc., 1995). Chi- 

square tests for the significance o f  a statistical relationship between categorical variables (for 

further explanation refer to Zar, 1999), but provides no measure of the strength of 

association. Cramer's V standardizes y 2 so that the coefficient is within a more interpretable 

range o f -1 to +1, representing the spectrum between complete disagreement (-1) and 

complete agreement (+1). Cramer's V provides a measure o f the strength of the relationship 

between variables. The equation for computation of V is as follows:

Cramer's V = square root o f ( y 2 / n min (r-1, c -1 )) Equation 1

Where y 2 = Chi Square value

n = samples 

r = number o f rows 

c = number o f  columns
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A more thorough description o f Cramer's V is given by Barber (1988) and Sokal and 

Rohlf (1995). Other statistics were applied on a variable by variable basis, identified in their 

respective methods section, and all tests were at the 95% confidence interval.

Each variable was estimated from vegetation using correspondence analysis (CA), 

applied as an exploratory technique whereby row and column data were compared using 

SYSTAT version 8.0 (SPSS, Inc., 1998) and BMDP (BMDP Statistical Software, Inc. 1992). 

It enabled visual interpretation o f multivariate categorical data, specifically vegetation 

community types compared with soil type, soil compaction rates, and elevation. CA 

mathematically decomposes a Chi-square into principal components, and also maximizes 

correlation between pairs of variable points (BMDP Statistical Software, Inc., 1992). 

Analysis is similar to a principal components analysis (PCA) for categorical variables, with 

cases as the rows and variable categories as the columns. The distinction is that in PCA the 

trace o f the covariance matrix sums to the total variance; in CA, the trace sums to the total o f 

“Chi-square / n”. CA analysis is carried out on an indicator or disjunctive matrix with 

coefficients and scale o f variables chosen to maximize the variation between individuals 

(BMDP Statistical Software, Inc., 1992).

Elevation Field Data Acquisition and Analysis

Acquisition of centimeter-level elevation data were needed to test for minor changes 

in elevation that are associated with changes in vegetation type. Forty-one locations 

coinciding with the sample sites were measured with differential global positioning system 

(DGPS). Elevation measurements had an error between 5 and 10cm from true elevation 

height due to changing satellite geometry, instrument precision, and duration o f site visit.
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Only elevations for short form S. altemiflora  were recorded; elevations for tall form S. 

altemiflora, found along the berms o f  tidal creeks, were not included. Elevation heights for 

maritime forest were acquired along lower dune slope elevations, approximately 1-meter 

beyond an observable ecotone boundary with high-density shrubs.

In addition to the Chi, Cramer’s V, and CA statistical testing, analysis o f  variance 

(ANOVA), Tukey tests, and linear regression were used to test for differences in elevation 

for each of seven vegetation community type categories (minus A. breviligulata). A Tukey 

test identified the vegetation classes with statistically similar elevations and explainable by 

the effects o f multiple variable interaction (Sokal and Rohlf, 1995). Post-hoc comparisons, 

such as the Tukey test, may be completed when categorical predictor variables yield 

unexpected results that need to be proven reliable by hypothesis testing (StatSoft, 1995). 

Tukey is a multiple comparison procedure wherein all variables are compared in a pairwise 

manner (Zar, 1999) taking into account the fact that more than two samples are computed 

(StatSoft, 1995). Whenever statistically significant F test scores are reported from an analysis 

o f variance testing, there is an interest in assessing which groups are different from each 

other. The Tukey results enabled the re-coding o f elevation data into vegetation types with 

similar elevation, reducing vegetation classes from seven to three: class one was S. 

altemiflora elevations alone; class two aggregated the elevations from S. patens, T. 

angustifolia, P. australis, and low density shrubs; and class three combined elevations 

acquired for M. cerifera and P. taeda dominated maritime forest locations. Elevations from 

these three class groups were statistically different from one another based on the analysis of 

variance test. Once group differences were confirmed, Pearson’s Chi-square and Cramer's V
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measure o f association tests were computed for elevations from the original seven vegetation 

classes and those from the three combined vegetation classes.

Three preliminary elevation transects were acquired under Parramore’s largest 

maritime forest, Italian Ridge dune. Relative height differences were measured across the 

crest o f the underlying dune using a laser range finder. Locations were selected in the field 

based on understory line-of-sight. Field-based ratios were established between forest width 

(distance across the forest perpendicular to shoreline), measured using a standard surveyors 

tape, and a) dune crest height and b) dune crest location. Dune slope elevations were 

computed from crest height, crest location, and dune base elevation (maximum elevation 

reported for high-density shrub). This model was developed since maximum dune elevations 

were highly variable and the adoption o f a single maximum elevation value would have 

misrepresented the true height o f  many forest locations.

Soil type data acquisition and analysis

Soil type data were acquired at forty-one vegetation type sample locations. A 61cm 

soil auger was used to acquire cores that were evaluated and classified in the field as one o f 

four soil classes:

1. Saturated, fibrist and saprist epipedon surface over a saturated grayish sand, with

no A horizon;
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2. Moist, to very moist, to saturated histic epipedons and highly decayed organic 

surface, over a variable A horizon (2 to 8cm), over a moist to very moist grayish 

sand;

3. Dry to moist surface duff over a well defined A horizon (5 to 15cm) over a dry 

brownish sand;

4. Heterogeneous beach sand composed of random layers o f unconsolidated sand and 

various types o f detrital litter.

Soil compaction data acquisition and analysis

Soil compaction rates were measured at twenty locations pre-selected by stratified 

random sampling from imagery over Parramore Island to represent each vegetation type, 

with the exception of A. breviligulata. A 50cm soil strength penetrometer with incremental 

digital readout was used. Three 0cm (surface), 5cm, 15cm, 30cm, and 46cm depth replicate 

samples were collected at each site with measurements recorded in pounds per square inch 

(psi). Dominant site vegetation and closest adjacent vegetation type to the sampling 

locations were recorded. Identification o f adjacent vegetation was to be used to determine if 

a soil strength gradient existed when moving from lower marsh to higher marsh.

Accordingly, vegetation classes S. patens, T. angustifolia, and P. australis were sub-divided 

into lower and upper elevation categories based on their geographic position within the 

transitionary high marsh. This sub-division increased the number o f vegetation classes 

related to soil compaction data from seven to ten. Vegetation was also re-grouped into three 

classes for statistical testing against soil compaction rates. The basis for the consolidation of 

classes was results obtained from vegetation-elevation analyses.
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In addition to Chi-square, Cramer's V, and CA statistical tests, multivariate analysis of 

variance (MANOVA) and ANOVA tests were completed to test the relation between the 

vegetation groups and soil compaction data at each Ocm, 5cm, 15cm, 30cm, and 46cm depth. 

Soil compaction data were ranked into 19 classes, 1 to 19, using a lookup table created to 

group the raw values incrementally every 50 pounds per square inch and tested for 

association with the 10-class vegetation grouping.

Tidal effects

Tidal heights at Parramore Island vary across a lunar cycle. For M ay 1999, mean low 

water was 0.30m, mean high water was 1.52m, and mean sea level was 0.94m, computed at 

mean lower-low water datum (www.coops.nos.noaa.gov/data retrieve.html). Daily tidal 

sequences submerge S. altemiflora, and periodically inundate the higher marsh species. 

High-density shrubs and maritime forest are above the 1.60-meter maximum tidal level, 

removing these vegetation communities from the effects o f regular tidal inundation.

Results

Statistical association between vegetation community type and elevation

All field variables and corresponding data are detailed in Table 1. In evaluating this 

field data, initial ANOVA results indicated that elevation values grouped within 7 vegetation 

classes were significantly different (F-stat = 25.53, F-critical value = 3.97, p-value = 0.0000, 

d.f. = 39). Furthermore, Tukey test results for the 7-vegetation classes identified similar and 

dissimilar vegetation pairs (Table 2a). Vegetation classes 2, 3, 4, and 6, were very similar,
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with values marked by asterisks in Table 2a indicate highly significant scores for a pair. 

Scores based on a 0.0 to 1.0 scale, with 1.0 representing a perfect correlation, illustrate that 

classes (2) Spartina patens, (3) Typha angustifolia, (4) Phragmites australis, and (6) Iva 

frutescens and Baccharis halimifolia (together constituting low-density shrub) are co-existing 

in a zone o f elevation that is essentially equivalent. A re-grouped 3-class vegetation 

grouping was selected based on these Tukey results and also based on the difficulty in 

separating high-density shrub class from maritime forest class spectral information. The 

three new groups comprise:

Group 1 - S’, altemiflora

Group 2- S. patens, T. angustifolia, P. australis, and I. frutescens and B. halimifolia

Group 3- M. cerifera and Maritime forest (dominated by P. taeda)

Figure 3 shows the elevation ranges for the original seven vegetation classes. The 

upper maritime forest elevation range was purposefully adjusted with an additional crest 

height data point with a more representative elevation range. Elevation range for each 

vegetation class was determined by the low and high elevation value sampled for that class, 

found in Table 3. A one-way ANOVA showed that elevation data for each vegetation class 

was statistically different (F-stat = 34.30, F-critical value = 3.97, p-value = 0.0000, d.f. = 39). 

Tukey test results for vegetation classes I, 2, and 3 shows that they are very different from 

one another with all results highly significant at the 95% confidence (Table 2b). Chi-square 

and Cramer’s V results for 3-vegetation classes versus elevation had highly significant scores
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showing a positive statistical association between the two terrain variables ( X 2 = 120 p-value 

= 0.0059, d.f. = 84, and V= 0.9884).

Correspondence analysis and a plot for 7-vegetation classes and elevation was 

computed (Figure 4). A non-significant Chi-square was computed as an intermediary result 

for Figure 4 (p-value = 0.144, d.f.=168). Five factors were needed to account for over 90% 

o f the cumulative contribution explaining the association between variables. Factor 1, 

represented as "Dim"ension (1) or the x-axis, contributed only 21.33% with eigenvalue 1.00, 

and factor 2, represented as "Dim"ension’ (2) or the y-axis, contributed only 21.33% with 

eigenvalue 1.00. The origin o f a graph matrix is found at the intersection of the red vectors. 

At the end o f each vector are elevation values and corresponding vegetation sample plots. 

Plot locations, shown by open circles, provide measurable distances (horizontally and 

vertically) from the origin, and this distance is an indication how far away the variable is in 

Chi-square euclidean distance from the overall marginal row profile. Horizontal and vertical 

distances between points (no diagonal distances) are approximate Chi-square distances 

between individual row profiles. The axes provide the scaled distances.

In Figure 4, the row, or vegetation variable, that contributed the most to Factor 1 was 

maritime forest (0.875). Likewise, the row variable contributing the most to Factor 2 was S. 

altemiflora (0.886). Column variables were the elevation values, and the contributing 

variables to Factor 1 were all the elevation values measured within maritime forest, and 

contributing variables to Factor 2 were all elevation values measured within S. altemiflora. 

This result supports the decision to divide elevation into groups, with S. altemiflora in a
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group by itself, and maritime forest in a group joined only by high-density shrub. The plot 

itself also indicates that there are three primary zones grouping together elevation values and 

vegetation codes; unfortunately, variable symbols are plotting on top o f  each other and 

difficult to read. Spartina altemiflora is plotted at the top; high-density shrub and maritime 

forest are together on the far right; and S. patens, T. angustifolia, P. australis, and low- 

density shrub are together just off the origin.

Correspondence analysis o f elevation zones, as justified from earlier findings, was 

used to compute a 2-axis plot for vegetation and elevation values (Figure 5). A highly 

significant Chi-square was computed as an intermediary result (p-value = 0.000, d.f.= 12). 

Two factors were needed to account for 100% of the cumulative contribution explaining the 

association between variables. Factor 1, represented as "Dim"ension (1) or the x-axis, 

contributed 52.28% with eigenvalue 1.00, and factor 2, represented as "Dim"ension (2) or the 

y-axis, contributed the remaining 47.72 with eigenvalue 0.913. The origin o f a graph matrix 

is found at the intersection o f the red vectors and at the end o f each vector are elevation zones 

and vegetation sample plots. Blue circles represent elevation zones and vegetation plot 

locations are shown by open red circle symbols.

In Figure 5, the row, or vegetation variable, contributing the most to the Factor 1 was

S. altemiflora (0.90). The row variables contributing the most to the Factor 2 were high- 

density shrub (0.346) and maritime forest (0.346). These results support the idea of three 

elevation zones and the appropriate vegetation members within the groups. The
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correspondence plot suggests that perhaps low-density shrub (code 6) could be justifiably 

separate from elevation zone 2, but that is the closest group to which it would belong.

Lastly, linear regression was used to determine the multiple contribution o f three 

elevation zones and four soil types in explaining the variation in vegetation type, and the 

contribution o f elevation in centimeters and soil type in explaining the variation in vegetation 

type. The regression coefficient computed from the 3-zone elevation variable (r2 = 0.86, p = 

0.0000, n = 41, d.f. = 2,38) was a better predictor o f  vegetation than the regression computed 

using raw elevation values (r2 = 0.78, p = 0.0000, n = 41, d.f. = 2,38). The regression results 

were further evidence to support the reduction o f vegetation classes into three groupings so 

that elevation could be considered a range o f values (3-zones) and not absolute integer data.

Estimation o f  centimeter-level elevation was most successful after vegetation types 

were re-grouped into 3 classes. Prior to re-grouping, overlap in elevation was evident in 

pair-wise Tukey comparison tests between high-marsh plant species. Pair-wise test results, 

known tidal range information, and the difficulty o f classification separability between high- 

density shrub and maritime forest, together endorsed the decision to combine seven 

individual vegetation types into three merged classes. Re-grouping mostly removed 

overlapping elevations and estimation of elevation ranges became simplified. The validity of 

estimating centimeter-level elevations based solely on resident vegetation type was not 

compromised by changing the methodology. A clearly defined lower elevation class 

included S. altemiflora  on its own. This monotypic lower marsh community grew between 

1.16 and 1.32 meters in elevation. A high elevation class combined high-density M. cerifera
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shrub, growing between 1.66 and 2.24 meters, with P. taeda dominated maritime forest at 

elevations greater than 1.99 meters. An overlap in elevation between M. cerifera and P. 

taeda noted at 1.99 to 2.24 meters could possibly signify the elevation range of an observable 

ecotone that separated these two distinct plant communities. The combination of M. cerifera 

high-density shrub and P. taeda observed forest types into a single elevation class eliminated 

mistakes in elevation estimating that would have resulted from a possible remote sensing 

misclassification between these two vegetation communities. The middle, or transition, 

elevation class included all high marsh species and occupied elevation in a narrow band of 

1.40 to 1.68 meters above mean low water. Again, the importance attributed to the 

classification o f vegetation was minimized as all four upper marsh species were re-coded (for 

elevation estimation only) to estimate an identical elevation range. Inclusion of invasive P. 

australis within this narrow elevation transition was noteworthy as other species at the same 

elevation are at greatest risk o f natural eradication by this reed’s prolific lateral rhizome 

expansion.

An elevation map was produced by reclassifying the vegetation class map from 7- 

classes to 3-classes and re-coding the 3-class vegetation map into elevation ranges: less than 

1.40m, 1.40 to 1.66m, and greater than 1.66m. The elevation map estimated from vegetation 

type is shown in Figure 2d.

A methodology to estimate dune height and relative crest location under maritime 

forests was tested based on forest widths. Plotting the results o f three test transects (Figure 

6) illustrated geomorphological similarities across the dune. The y-axis measures the dune
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heights, the x-axis the forest width, and the transect break points represent the dune crest 

locations. Table 4 contains the original transect data. For the three preliminary transects, 

ratios were computed based on H = dune height, LS = lee slope, and W = forest width:

Dune Height Estimate Transect 1 Transect 2 Transect 3 Average Ratio

H / W = 0.30 0.30 0.37 0.32

The average ratio (0.32) multiplied by forest width (W) equaled the estimated dune height.

Average Ratio * W = H.

Side slopes were computed as a constant rate o f elevation change using an approximate base 

dune elevation of two-meters to denote the forest boundary.

Crest Location Estimate Transect 1 Transect 2 Transect 3 Average Ratio 

LS / W = 0.21 0.18 0.19 0.19

The average ratio (0.19) multiplied by forest width (W) equaled the estimated location of the 

dune crest, determined as a function o f distance measured from the lee slope forest edge (D). 

Average Ratio * W = D 

W - D = Dune Crest Location

Preliminary results suggest forest width measurements may provide a single predictor 

variable for modeling a maximum elevation value. Ratios calculated for forest width 

measurements (derivable from imagery) and dune height, and forest width and crest location, 

suggest that empirical models could be validated after tests with additional transect samples. 

Dune slope elevations were easily computed given estimated dune height and crest location.
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Presently, determining maritime forest elevations demands labor-intensive field-surveys 

because the forest canopy conceals the ground elevation from possible airborne 

photogrammetric measurement.

Vegetation type association with soil type

Many vegetation types grew within a single class of soil. For example, S. altemiflora 

(n = 2), S. patens (n = 12), and T. angustifolia (n = 6) were observed on soil type one. 

Phragmites australis (n = 3) was found on soil type one and two. The existence of 

Phragmites upon soil type one, soil dominated by halophytic species such as Spartina, 

indicates its ability to adapt, compete and thrive in domains that were not necessarily 

preferential habitat (Amsberry et al, 2000). Low density shrubs such as I. frutescens (n = 8) 

were observed on soil types one and two, but usually two. High-density shrubs such as M. 

cerifera (n = 10) grew on soil types two and three, but usually two. Growth o f M. cerifera in 

soil type three is likely explained as the ecotone area where there was a quarter meter o f 

elevation agreement with the lower end of maritime forest elevation values. Tukey pair-wise 

comparisons suggested separability between M. cerifera and forest elevations were 

statistically attainable. P. taeda maritime forest grew on soil type three. Lastly, A. 

breviligulata (n = 3) was found on soil type four. Scores from Pearson's y} = 93 (p-value of 

0.00, d.f. = 21, n= 41) and Cramer's V = 0.85, both suggest a strong positive association 

between vegetation type and soil type.

Correspondence analysis was used to compute a 2-axis plot for vegetation and soil 

types (Figure 7). A highly significant Chi-square was computed as an intermediary result (p- 

value = 0.000, d.f.= 18). Two factors were needed to account for over 99.70% o f the
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cumulative contribution explaining the association between variables. Factor 1, represented 

as "Dim"ension (1) or the x-axis, contributed 67.54% with eigenvalue 0.865, and factor 2, 

represented as "Dim"ension (2) or the y-axis, contributed 32.16% with eigenvalue 0.412.

The origin o f a graph matrix is found at the intersection o f the red vectors and at the end of 

each vector are soil type and vegetation sample plots. Vegetation plot locations are shown 

by open red circle symbols and blue symbols represent soil types.

In Figure 7, the row, or vegetation variables, contributing the most to Factor 1 were 

maritime forest (0.797) and S. patens (0.102). Several row variables contributed to Factor 2: 

high-density shrub (0.457), S. patens (0.184), low-density shrub (0.132), S. altemiflora 

(0.105), maritime forest (0.064), and P. australis (0.055). The vegetation variables are 

plotted in sequence, 1 to 7, and then 8 off to itself, essentially replicating the natural 

sequence o f vegetation zonation attributable in part to soil type. The correspondence plot 

suggests that low-density shrub (code 6) could be justifiably separate from elevation zone 2, 

but that it is the closest group to which it would belong.

Cramer’s V, Chi-square, and correspondence analysis results supported the 

compilation o f an estimated soil type map (Figure 2c) based on the re-coding o f  the original 

eight vegetation classes into soil classes using Table 3. A reliability score could be assigned 

to each soil class by using field-data results. For example, a vegetation class such as S. 

altemiflora that is only found on soil type one, would result in a 100 per cent correct 

assignment o f a site to a particular soil type, provided the vegetation was classified correctly 

in the first place. Field data for low- density shrubs (/. frutescens) showed a preference for 

both soil types one and two, but for type two 80 percent o f the time. An 80 percent chance of
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assigning soil type two to the I. frutescens vegetation class correctly would be included as a 

reliability attribute for determining soil type.

Estimation of soil types from vegetation type provided an island-wide image of the 

soils that would otherwise be difficult to acquire from strategically located field samples. 

Also, a map o f complete soil cover provides increased insight into the physical processes o f 

sediment delivery/generation and removal that have shaped the geomorphology of Parramore 

Island.

Vegetation type association with soil compaction rates

A MANOVA was completed to assess the effects o f multiple independent variables 

vegetation type and grouped soil compaction values computed at five depths for 10- 

vegetation classes:

DeDth D-value n

0cm 0.47 0.0137 60

5cm 0.24 0.0137 60

15cm 0.59 0.0001 60

30cm 0.88 0.0137 60

46cm 0.72 0.0000 60

The p-values at all depths were highly significant and vegetation type explained the 

variance in soil compaction at depths o f 30 and 46cm the most effectively. Analysis of 

variance results for 10-, 7- and 3-vegetation classes (respectively) and soil compaction rates 

affirmed the MANOVA findings by returning significant p-values at all depths and increased
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F-statistics as the measured depth increased (Table 5). The Chi-square and Cramer’s V 

association test for the 10-, 7- and 3-vegetation classes and soil compaction strength 

produced scores o f at least 0.85 for 30 and 46cm depths; all shallower depths produced 

smaller scores (Table 5). Similar to the MANOVA and ANOVA results, the scores for Chi- 

square and Cramer’s V increased with depth measured. Figure 8 gives Cramer's V scores o f 

association between soil compaction and 10-vegetation type classes, computed by depth. 

Figure 9a shows the average soil compaction rates at each o f the five depths for all vegetation 

types. A simple box-and-whisker plot (Figure 9b) showed that the greatest variation among 

soil compaction rates was measured at 30cm (12in) and 56cm (18in) depths. Chi-square and 

Cramer's V scores supported mapping the estimated soil compaction strength for 30 and 

46cm depths (Figure 2b). A 7-class vegetation map (minus A. breviligulata) was classified 

and the legend attributed using estimated soil compaction minimum and maximum rates 

found in Table 6, for 30 and 46cm depths. Means and standard deviations could have been 

included as attributes also. An attempt to classify soil compaction values into 19 rank 

ordered categories did not improve the statistical relation between vegetation type and soil 

compaction as both Chi-square and Cramer's V test scores decreased after grouping the 

compaction data values. Accordingly, this approach for estimation o f  soil strength was 

dismissed.

Soil compaction showed the strongest statistical relation with vegetation type at 

depths o f 30 and 46cm, while at shallower depths (surface, 5cm, and 15cm) the relation was 

considerably less (Figure 9a). This graph supported the Chi-square and Cramer’s V test 

statistics indicating that vegetation type was better at estimating soil compaction at depths o f
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30 and 46cm than at shallower depths. Maritime forest and high-density shrubs grew on soil 

with the greatest compaction rates at depths o f 15cm and greater, helping to explain the 

stability of these environments against sediment loss. Maritime forest and high-density shrub 

also had the most variable soil strengths and, correspondingly, had the larger Chi-square and 

Cramer’s V scores. Spartina altemiflora and lower elevation S. patens marsh grew in soil 

where the compaction rates were consistently less, distinguishing the lower marsh as an area 

with a potential for soil erosion and regenerative sedimentation. Lower marsh species 

(.Spartina genus) were associated with low overall soil strengths at all depths.

Lastly, correspondence analysis evaluated 10 vegetation community types and soil 

compaction rates at 5 depths. Row and column pairs were decomposed into four 

components, with the first two components explaining 73.8% o f the association (component 

1, or the principal component, contributed 43.0% and component 2 contributed 30.8%). 

Figure 10 shows the first (axis 1) and second component (axis 2) with vegetation and soil 

compaction variable names plotted. Plotted distance from the origin, or intersection o f the 

two axes, provides an indication o f how far away each variable is in chi-square distance from 

the overall marginal row and column profile. For depth variables, soil compaction rates at 

30cm (12in) and 46cm (18in) were very closely associated along the first component axis and 

closely associated with the second component; 15cm (6in) and 5cm (2in) were closely related 

but far removed from the first and second components; and surface measurements were 

plotted in isolation and exceptionally far away from both axis. All vegetation communities 

hovered about the origin, or right on the primary component axis, except for marsh species 

lower S. patens and S. altemiflora. A review o f the raw data shows these communities to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5-28

have the least range in compaction rates at all depths o f all the vegetation communities 

studied. Phragmites australis samples acquired from upper and lower elevations were 

plotted as equivalent in coordinate space suggesting a laterally monotypic soil condition; 

accordingly, “hiaust”, or upper P. australis, had to be plotted by hand to show it’s coincident 

graph location with “loaust”, lower P. australis. Conversely, S. patens and T. angustifolia, 

while also divided into upper and lower sampling sites, were plotted away from each other in 

coordinate space.

The interpretation o f  Figure 10 concurred with prior statistical findings that suggested 

that soil compaction rates at 30cm (in 12) and 46cm (in 18) were most closely associated with 

vegetation community. These variables plot directly on, or just off, the first axis. Additional 

information conveyed by this graphic was that S. altemiflora and S. patens had the poorest 

association with compaction rates of all the community types and surface (zeroin) soil 

compaction rates had poor association with any vegetation type. Correspondence analysis 

also provided a highly significant cumulative Chi-square measure of association for the 

compaction rates at all depths (x2 = 686, p-value = 0.00).

Discussion

Current landscape cover maps are critical to resource managers charged with 

decision-making. Historically, much research involving ecological relationships focused on 

landform or elevation as the dependent variable. With the advent o f emerging Light 

Detection and Ranging (LIDAR) technology (Hill et al, 2001), suggested as capable of 

achieving elevations within 10cm absolute accuracy (Krabill et al, 2000), coastal zone
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elevation models could also be useful as a predictor variable for vegetation and soil 

properties. LIDAR elevation values would be a likely complement to remotely-derived 

vegetation community class maps for the prediction of soil type and compaction rates.

Grace’s (1987) contention that sorting out interrelated variables for determining plant 

species would incur costly and time-consuming field experiments was mostly correct. 

Empirical field relationships examined for this research project did consume significant time 

and effort. However, time spent judiciously in the field was sufficient to enable the mapping 

o f all o f  Parramore Island. Multivariate statistics are well suited for sorting out interrelated 

variables and determining principal contributors.

Walker’s (1989) investigation o f vegetation types grouped according to moisture 

regimes and micro-scale variations in topography was analogous to the methods applied here. 

In the case o f Walker’s work, availability of independent data was the key to establishing the 

vegetation model. Ecological models should be designed to work with available data, 

remotely derived or otherwise (Wessman et al, 1998). Quantitative soil landscape models 

have been proposed for terrestrial environments that relied heavily on the use of available 

variables, especially elevation data, as independent predictor variables (Gessler et al, 1995). 

However, models that have relied historically on USGS digital elevation model data would 

be ineffective in the coastal zone where small changes in elevation occur that are within the 

vertical error of the data (Skidmore and Turner, 1988).
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Moore et al (1993) and Steele (2000) investigated the spatial component of soil as 

related to slope or landform. In a coastal zone, landform is a principal factor in determining 

amount o f hydrological coupling with the vegetation. Ecological relationships in the coastal 

environment, especially a barrier island, are distinctly zonal and related to landform. Spatial 

pattern and structure were evident on Parramore Island, perhaps futher explained by 

geostatistical methods (Webster and Oliver, 2001).

Soil information is necessary for judicious natural resource management and only a 

few industrialized countries have complete detailed surveys (McKenzie et al, 2000). 

McKenzie et al (2000) questioned the efficiency o f conventional methods for acquiring soil 

data. They recommended the use o f terrain analysis to assist in the classification of soils. 

Vegetation as a predictor variable also satisfies this recommendation. The McKenzie et al 

(2000) solution was to develop process-based relationships between terrain and soil due to 

their dissatisfaction with empirical models not being portable from one site to another. The 

extendability o f  empirical models depends on the uniqueness o f the study site. For example, 

Parramore Island has neighbors within its 18-island chain that are geomorphically similar. 

Models developed for Parramore Island should be tested on these islands to test model 

portability and validate, or invalidate, the McKenzie claim.

Remote estimation of centimeter-level elevation could provide a tool for the rapid 

prediction o f  flood prone barrier island areas. Temporal mapping o f  tidal marsh vegetation 

could provide an efficient, preliminary indication o f an increase or decrease in centimeter- 

level elevation change, as well as the anticipated impact on fishery productivity in adjacent
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estuaries. Tidal flow effects the exchange o f nutrients between marsh and estuary, and 

reduced velocities in tidal creeks and sheet flow will cause increased sedimentation that may 

decrease fish recruitment and survival (Weinstein and Balletto, 1999). Positive relationships 

between areas o f marsh and commercial fishery productivity have been documented 

previously (Gosselink, 1984; and Costanza et al, 1989). Small changes in elevation can affect 

vegetation community structure and diversity. Management decisions that may increase 

sediment delivery and raise overall marsh elevation, or decrease sediment accretion and 

lower marsh elevation, will ultimately have an impact on vegetation communities.

Given the horizontal inaccuracies allowed by the U.S. National Map Accuracy 

Standard (0.5mm) and a purity (accuracy) o f 0.80 o f a typical soil map (Lyle, 1999), 

horizontal inaccuracy can be expected if  attempting to align, for example, soil, elevation, and 

vegetation map data geographically. Lyle computed the accuracy o f a new map after cubing 

the 0.80 error in each separate map (0.8 x 0.8 x 0.8) to arrive at a horizontal accuracy for the 

combined map o f approximately 0.51. If  one was to use vegetation community types derived 

from imagery and then recode the vegetation to estimate soil type, as was done for this work, 

the source o f horizontal error would be restricted to the initial vegetation classification.

Tidal inundation within a lower marsh provides a physical mechanism for dynamic 

equilibrium between erosion (from existing marsh soil) and deposition of new sediment as 

sheet-like tidal flow encounters marsh grass resistance, causing the velocity to decrease, and 

suspended loads to be deposited (Friedrichs and Perry, 2001). Lower compaction rates 

encourage air spaces in the soil that are critical for the transfer of oxygen to the root zone of
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the vegetation. Measurements from Parramore Island confirm that the variation in soil 

compaction strength is directly associated with resident vegetation. In addition, uniform 

horizontal and vertical compaction rates exist in association with monotypic vegetation such 

as S. altemiflora, and the more biologically diverse vegetation complexes were associated 

with increasing variation in soil compaction horizontally and vertically. This finding 

suggests that vegetation diversity requires soil compaction strengths that are variable in both 

the horizontal (aerial) and vertical (depth) dimensions. Accordingly, constructed wetlands 

may need to mimic naturally occurring soil compaction rates if  they are to achieve desired 

biological diversity levels.

Two additional ecological phenomena appear capable o f being estimated from image- 

derived vegetation classes: a) nutrient cycling and b) invasive species advancement. Salt 

marsh vegetation is believed to be among the most productive on earth with annual estimates 

o f  80 metric tons per hectare of plant material in the southern coastal plain o f North America 

(Mitsch and Gosselink, 1993). High marsh consistently functions as a geochemical sink 

while lower marsh accounts for variable flux in dissolved organic nitrogen (DON) and 

dissolved organic phosphorous (DOP) (Wolaver, 1981). High marsh bacteria require DON 

and DOP for the decomposition of detritus and its release into the estuary in soluble form. 

Particulate nitrogen and phosphorous are removed by both low and high marshes due to 

settling o f suspended loads (Wolaver, 1981). Given the substantial productivity o f salt marsh 

communities, nutrient flux from these environments into adjoining estuaries are essential for 

overall sustainability o f the ecosystem. Classification and temporal monitoring o f vegetation
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changes, such as those occurring in Spartina marsh communities, can be accomplished from 

a high-resolution image source.

Imagery classification was successful at separating reed classes, T. angustifolia and P. 

australis, from the salt meadow hay S. patens class. This result bodes well as a basis for 

using remotely sensed data for the future management o f invasive species. The complexity 

and distribution o f the reed species, especially P. australis, is o f immediate importance to 

resource land managers responsible for maintaining biodiversity and wildlife habitat, because 

it is believed by many to provide little nutritional food source and minimal shelter for 

wildlife (Pyke, 1999; Silberhom, 1999). Annual monitoring using a classification of high 

spatial resolution imagery would quantify changes in the aerial extent o f each community 

and, based on these, control and eradication measures could be implemented.

Conclusion

The aim of this study was to describe an ecological association between vegetation 

communities and a) elevation, b) soil type, and c) soil compaction strength based on 

statistical significance. Vegetation communities were selected purposefully because o f their 

ability to be remotely classified into a land cover map from remote sensing. Field data were 

collected to statistically test the significance and strength o f  association between ecological 

variables. Vegetation field data was used in the development o f  empirical models.

The statistical relationship between seven initial vegetation classes and absolute 

elevation value was small due to an overlap in elevation for the high marsh vegetation.
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Correspondence analysis o f elevation values and vegetation classes illustrated this overlap in 

elevation in a 2-factor plot. Accordingly, vegetation was re-grouped into low marsh, 

transitionary high marsh, and upper elevation communities. Statistical tests were re

computed and the results improved predictive power o f vegetation type as an estimator of 

centimeter-level elevation ranges. High marsh vegetation was measured within a narrow 

elevation range o f 1.40 to 1.66m suggesting intense competition between the species. 

Maritime forest was established on ground at or above 2.0m elevation. At the other end of 

the spectrum, S. altemiflora was dominant at elevations o f less than 1.32m. Elevation 

changes, measurable at the centimeter-level, provide compelling evidence o f plant 

tolerance/intolerance to tidal inundation. Elevation clearly defined and restricted the location 

o f  individual plant species and created a distinctive zonal pattern o f  vegetation diversity.

Soil type was shown to have a strong association when tested against eight vegetation 

types: S. altemiflora, S. patens, T. angustifolia, P. australis, I. frutescens, M. cerifera, 

maritime forest (P. taeda), and A. breviligulata (%2 = 0.93; p-value = 0.0000; df.= 21; V =

0.86). Correspondence plot Figure 7 illustrated this strong relationship as vegetation 

communities were closely aligned with appropriate soil types. However, when compared to 

grouped vegetation types (Group 1-5. altemiflora-, Group 2- S. patens, T. angustifolia, P. 

australis, I. frutescens; Group 3- M. cerifera and maritime forest; Group 4- A. breviligulata), 

groupings similar to those used for elevation zone designation, the test statistics dropped 

considerably (x2 = 0.58; p-value = 0.0000; d.f.= 9; V= 0.68). Results were better when 

vegetation types were evaluated independently against soil type.
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The estimation o f soil type within the barrier island was limited to four possible soil 

choices:

1. Saturated, fibrist and saprist epipedon surface over a saturated grayish sand, with 

no A horizon;

2. Moist, to very moist, to saturated histic epipedons and highly decayed organic 

surface, over a variable A horizon (2 to 8cm), over a moist to very moist grayish 

sand;

3. Dry to moist surface duff over a well defined A horizon (5 to 15cm) over a dry 

brownish sand;

4. Heterogeneous beach sand composed o f random layers o f  unconsolidated sand and 

various types o f detrital litter.

Soil compaction was related closely to vegetation type at depths o f  30 and 46cm. 

Cramer's V scores of association between 30 and 46cm soil compaction rates and vegetation 

community types for 10, 7 and 3-vegetation classes were always 0.85 or greater, on an 

absolute scale of 0.0 to 1.0. Re-grouping vegetation from 10- to 7- to 3-classes positively 

improved association test scores at 30 and 46cm depths. Soil compaction values for the 

surface and shallower depths (5 and 15cm) showed little association with vegetation type. 

Estimation o f soil compaction at shallow depths was impractical based on the results at 

Parramore Island.

Vegetation diversity and the structural complexity of ecosystems appear to be 

measurable from high-resolution imagery. Complexity might be shown to be part o f a larger,
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more homogeneous spatial scale o f diversity, perhaps best evaluated through a geostatistical 

analysis of imagery (Oliver et al, 2000). A standard ecological diversity score can be 

computed for vegetation communities on Parramore Island and compared with imagery- 

derived scales o f spatial variation. Spatial variation might be determined using the variogram 

(a geostatistical tool) for a normalized difference vegetation index (NDVI) spectral image 

band acquired over the island. This spatial scale o f  variation could have a short- and long- 

range component and thus could be used to guide further sampling and also the degree o f 

detail required for future mapping based on classification (Oliver et al, 2000; Oliver et al, in 

press). Elevation data acquired from LIDAR is sufficiently detailed (~lm  horizontal 

postings and ~15cm vertical accuracy) for variogram analysis and again might reveal 

whether there are short- and long-range components in the variation. Elevation and NDVI 

variograms could be compared in identical cardinal directions and if  they have similar spatial 

components this would suggest that the effects o f  elevation can be detected from the 

imagery. The variogram for one feature (NDVI or elevation) could be used to help estimate 

the other feature using co-kriging (geostatistical prediction). Soil data are more difficult to 

acquire than either vegetation or elevation. Variograms o f soil properties can be computed 

from the sample data and used to estimate values at unsampled places across the island by 

kriging (Webster and Oliver, 2001), thereby complementing the empirical models for 

estimating soil type and compaction strength established in this study. Kriging uses the 

variogram and the data to provide optimal unbiased estimates. The reliability o f the 

estimated values o f soil properties could be determined using the kriging variance which is 

calculated at the same time as the predictions by kriging.
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Together, remote sensing and association among ecological variables aid large-area 

analysis o f barrier islands and inter-relations with neighboring ecosystems. Remote sensing 

offers a “top-down” technology critical for determining the scale o f variation and 

characterization o f large areas o f land. Estimation o f centimeter level elevation, soil type, 

and soil compaction strength complements image analysis by providing an alternative to 

exhaustive ground-level surveys needed for measurement and calibration. Estimation o f soil 

variables would not have been obtained directly via image analysis and surely would have 

been costly and time consuming to acquire through intensive field analysis. Remote sensing 

together with methods that relate ecological variables will assist coastal zone managers in 

ecosystem management and decision-making.

Remote sensing may also be used to address specific resource management issues 

identified earlier. Shoreline erosion along the coasts o f the barrier islands can be mapped 

and quantified from high-resolution image source. Any necessary erosion mitigation efforts 

can be targeted and monitored. Rapidly changing ecological conditions that historically 

inhibited compilation o f  accurate records o f the islands (Oertel et al, 1994) can now be 

accounted for with timely remote sensing missions. Airborne missions may be flown at any 

time while satellite data is on a fixed schedule. Archival imagery could be viewed and 

compared with coincident imagery collects for studying the effects o f sea level rise 

(Christensen, 1988; Nicholls et al, 1998; Jorgenson and Ely, 2001). As global warming 

continues, sea level rise can be expected to accelerate. Combining a LIDAR high resolution 

elevation model with a spectral image classification map into a 3-dimensional display would 

provide an excellent graphic tool for visualization o f  future sea level rise impacts, such as the
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potential loss of plant diversity suggested by Garcia-Mora et al (2000) and Wood (2001). If 

disturbances are having a profound effect on plant life, as suggested by Huggett (1995), the 

effect must be documented and mitigated.

A logical first step is to map vegetation change, a step that remains ripe for remote 

sensing contribution. Mapping o f  vegetation communities from imagery provides a synoptic 

view o f vegetation fragmentation. People’s existence within the barrier islands should be 

monitored and routinely compared for direct links to excess nutrient loadings, over-fishing, 

introduction of overheated water from factories, habitat loss, accumulation of pollutants, 

sedimentation, marine and beach debris, and oil spills within the coastal zone. Our existence 

is spatially related to these anthropogenic disturbances and again may best be evaluated using 

image source as a reference tool. Resource managers have developed decision support 

models and land decision models but they demand land cover data to run (Cihlar et al, 2000). 

This data can either come from field collections, image classifications or both. A 

combination of field and imagery are recommended, perhaps with the opportunity to apply 

geostatistical techniques for mapping into the mix in the near future.
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Table 1. Field variables and corresponding data. Vegetation, soil, and elevation zone 
are categorical data values, while percent cover o f vegetation and elev (m) are integer 
values. Plot ID is the sample identification number corresponding to the field sample 
location. Veg values 1, 2, 3, 4, 6, 7, and 8 represent: S. altemiflora, S. patens, T. 
angustifolia, P. australis, low-density shrub, high-density shrub, and maritime forest. 
Soil values are represented as follows: 1 = Saturated, fibrist and saprist epipedon 
surface over a saturated grayish sand, with no A horizon; 2 = Moist, to very moist, to 
saturated histic epipedons and highly decayed organic surface, over a variable A 
horizon (2 to 8cm), over a moist to very moist grayish sand; 3 = Dry to moist surface 
duff over a well defined A horizon (5 to 15cm) over a dry brownish sand; 4 = 
Heterogeneous beach sand composed of random layers o f unconsolidated sand and 
various types o f detrital litter. Elevation zones are represented as follows: 1 = 1.16 to 
1.32m; 2 = 1.40 to 1.66; 3 = 1.66 to 2.24 (or higher).

Plot ID Veg Percent Cover Soil Elev zone Elev (m)
181 1 50 1 1 1.16
182 1 50 1 1 1.20
100 1 50 1 1 1.32
200 1 50 1 1 1.23

1 2 100 1 2 1.40
2 2 100 1 2 1.48
3 2 50 2 1.48
12 2 100 1 2 1.49
19 2 100 1 2 1.54
13 2 100 1 2 1.55
14 2 80 1 2 1.57
37 2 100 1 2 1.58
9 2 90 1 2 1.58
17 2 100 1 2 1.60
33 2 100 1 2 1.63
34 2 100 1 2 1.65
29 2 50 1 2 1.65
4 3 75 2 1.50
23 3 100 1 2 1.56
38 3 100 1 2 1.56
11 3 50 1 2 1.57
10 3 70 1 2 1.63
30 3 80 2 2 1.66
5 4 100 2 2 1.51
6 4 10 2 2 1.58
32 4 100 1 2 1.60
31 4 100 1 2 1.63
15 6 50 1 2 1.58
24 6 50 2 2 1.59
20 6 100 2 3 1.68
7 7 100 3 3 1.66
28 7 75 2 3 1.69
36 7 75 2 3 1.72
22 7 90 2 3 1.80
18 7 100 2 3 1.89
35 8 50 3 3 1.99
21 8 50 3 3 2.19
25 8 55 4 3 2.51
26 8 60 3 3 2.69
8 8 40 3 3 7.08

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5-52

Table 2. (a) Tukey results o f pair wise comparisons for 7-vegetation classes. Earlier 
ANOVA results indicated that elevations grouped within 7 vegetation classes were 
significantly different (F-stat = 25.53, F-critical value = 3.97, p-value = 0.0000, d.f. = 39). 
Tukey test results for the 7-vegetation classes identified similar and dissimilar vegetation 
pairs based on the test scores returned. Tukey scores are based on a 0.0 to 1.0 scale, with 1.0 
representing a perfect correlation and values marked with an asterisk (*) indicating a highly 
significant score for a vegetation pair. Scores below indicate that classes (2) S. patens, (3) T. 
angustifolia, (4) P. australis, and (6) I. frutescens and B. halimifolia (together constituting 
low-density shrub) are co-existing in a zone o f elevation that is essentially equivalent.

1 2 3 4 6 7 8

1 1.0000
2 .0052* 1.0000
3 .0064* .9993 1.0000
4 .0369* .9999 1.0000 1.0000
6 .0186* 1.0000 .9999 .9999 1.0000
7 .0002* .0069* .0664 .1764 .0469* 1.0000
8 .0001* .0001* .0001* .0001* .0001* .0002* 1.0000

(b) Tukey results o f pair wise comparisons for 3-vegetation classes. All values are highly 
significant. A re-grouped 3-class vegetation grouping was selected based on earlier 7- 
vegetation class Tukey results (Table 2a) and, also, based on the difficulty in separating high- 
density shrub class from maritime forest class spectral information. The three new groups 
comprise:

Group 1 - S. altemiflora
Group 2- S. patens, T. angustifolia, P. australis, and /. frutescens and B. halimifolia
Group 3- M. cerifera and Maritime forest (dominated by P. taeda)

1 2 3

1 .0049 .0001
2 .0049 .0001
3 .0001 .0001
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Table 3. Variables in this table include: vegetation type, elevation ranges (low and high) in 
meters, elevation class, soil class, and probability (%) o f  correctly estimating soil class from 
the field data that was collected. Elevation range for the three new vegetation classes was 
determined by selecting the lowest and highest elevation in the grouping. The values in 
parentheses beneath column “soil class” represent a secondary soil class in which the 
vegetation type was found.

Veeetation Tvoe Low Elev. (ml Hieh Elev. (ml Elev. Class Soil Class Prob (%)
S. altemiflora (short form) 1.16 1.32 1 1 100
S. patens 1.40 1.65 2 1(2) 92
T. angustifolia 1.56 1.63 2 1 (2) 67
P. australis 1.51 1.66 2 2(1) 50
I. frutescens, B. halimifolia 1.48 1.68 2 2(1) 67
M. cerifera 1.66 2.24 3 2(3) 50
P. taeda maritime forest 1.99 7.08 3 3(4) 80
A. breviligulata n/a n/a n/a 4 100
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Table 4. Dune transect data acquired to support the development o f  a methodology to 
estimate maximum height and crest based on forest width measurements. Three preliminary 
transects were run (sample transects 1, 2 and 3). Measurements acquired along the transect 
included: dune crest height in meters (height); width o f the leeward, steeper side of the dune 
in meters (short); width o f the windward, shallower side o f the dune (long); total width o f the 
dune in meters (short and long). Ratios were computed from these field data to compute: 
crest location (short / (long + short) and dune height A methodology to estimate dune height 
and relative crest location under maritime forests was tested based on forest widths. Plotting 
the results o f  three test transects (Figure 4) illustrated geomorphological similarities across 
the dune. The y-axis measures the dune heights, the x-axis the forest width, and the transect 
break points represent the dune crest locations. Table 4 contains the original transect data. 
For the three preliminary transects, ratios were computed based on H = dune height, LS = lee 
slope, and W = forest width: (height / (short + long).

Height
(m)

Short
(m)

Long
(m)

Short
&

Long
(m)

Short 
/ Long

+
Short
(ratio)

Height 
/ Short 

+ 
Long 

(ratio)
Sample transect I 7.13 4.72 17.99 22.71 0.21 0.30
Sample transect 2 4.42 2.65 11.80 14.45 0.18 0.30
Sample transect 3 7.01 3.54 14.75 18.29 0.19 0.37
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Table 5. Statistical results o f 10-, 7-, and 3-vegetation classes tested for their analysis of 
variance (F-stat, F-critical, p-value, and degrees o f freedom) and measures of association 
(Cramer’s V, Chi square, p-value, and degrees o f freedom) with soil compaction values 
measured at depths of 0-, 5-, 15-, 30-, and 46cm. The p-values at most depths were 
significant at the 95% confidence level. Vegetation type explained the variance in soil 
compaction at depths o f 30- and 46-cm the most effectively, regardless o f  the number of 
vegetation classes. Analysis o f variance (ANOVA) results for 10-, 7- and 3-vegetation 
classes (respectively) and soil compaction rates affirmed the MANOVA findings by 
returning significant p-values at most depths and increased F-statistics as measured depths 
increased. The Cramer’s V and Chi-square association test for the 10-, 7- and 3- vegetation 
classes and soil compaction strength produced scores of at least 0.85 for 30- and 46-cm 
depths; all shallower depths produced smaller scores. Similar to the MANOVA and 
ANOVA results, scores for Chi-square and Cramer’s V increased with measured depth.

10 Veg 
Classes 
Depth F-Stat F-Crit p-value d.f. Cramer's V Chi p-value d.f.

46-cm (18-in) 359 3.9 0.0000 135 0.85 457 0.04 405
30-cm (12-in) 226 3.9 0.0000 135 0.85 452 0.01 378
15-cm (6-in) 195 3.9 0.0000 135 0.74 342 0.08 306
5-cm (2-in) 187 3.9 0.0000 135 0.66 272 0.00 207
0-cm (0-in) 80 3.9 0.0000 135 0.45 128 0.01 90

7 Veg 
Classes
Depth F-Stat F-Crit p-value d.f. Cramer's V Chi p-value d.f.

46-cm (18-in) 362 3.9 0.0000 135 0.87 308 0.04 264
30-cm (12-in) 230 3.9 0.0000 135 0.89 322 0.00 246
15-cm(6-in) 203 3.9 0.0000 135 0.75 232 0.05 198
5-cm (2-in) 201 3.9 0.0000 135 0.59 144 0.22 132
0-cm (0-in) 103 3.9 0.0000 135 0.40 65 0.29 60

3 Veg 
Classes
Depth F-Stat F-Crit p-value d.f. Cramer's V Chi p-value d.f.

46-cm (18-in) 365 3.9 0.0000 135 0.96 127 0.00 88
30-cm (12-in) 232 3.9 0.0000 135 0.96 124 0.00 82
15-cm (6-in) 207 3.9 0.0000 135 0.73 72 0.3 66
5-cm (2-in) 210 3.9 0.0000 135 0.60 49 0.28 44
0-cm (0-in) 122 3.9 0.0000 135 0.44 26 0.17 20
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Table 6. Summary o f  the minimum and maximum soil compaction values, measured in 
pounds per square inch (psi), grouped by vegetation type at 0, 5, 15, 30, and 46cm depths. A 
7-class vegetation table (minus A. breviligulata) lists the minimum and maximum soil 
compaction rates sampled at each of the five depths. Compaction rates were measured in the 
field with a 50cm soil penetrometer.

Vegetation 0cm 5cm 15cm 30cm 46cm
S. altemiflora 0-20 40-142 106-147 101-137 117-152

S. patens 5-50 25-101 45-101 81-244 71-504
T. angustifolia 0-40 5-142 25-295 132-310 188-498

P. australis 5-30 25-117 56-137 106-213 218-437
I.frutescens 20-45 66-71 122-152 254-412 280-376
M. cerifera 20-25 45-61 91-168 519-758 310-946

P. taeda 15-50 30-96 167-290 458-483 524-616
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Figure 1. Location map of study site at Parramore Island, Virginia. Eighteen barrier islands 
make up a chain trending northeast-to-southwest off of Virginia’s Eastern Shore Parramore 
Island is the central-most island in this barrier chain. No permanent human population 
inhabits the island and activities such as agriculture, hunting, logging or similar activities are 
prohibited. The island is approximately ten kilometers long by one and a half kilometers 
wide and is separated from the mainland by a series of bays, salt marsh and small tidal 
creeks. Barrier island dune and valley complexes represent unique geomorphological 
conditions that support very distinct vegetation zonation. Homogenous stands o f cattails (T 
angustifolia) and common reed (P. australis) are found growing within Parramore Island's 
upper valley marshes. The high marsh also supports low-density, short-height marsh elder (/. 
frutescens) and groundsel-tree (B . halimifolia), found in co-existence with an herbaceous 
component that includes S. patens and T. angustifolia.
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Figure 2. (a) Multispectral 4-channel imagery, acquired in May 1999, displayed as a false 
color composite image o f Parramore Island, Virginia, (b) Vegetation classes were derived 
from the imagery using a supervised classification method, and the vegetation classes 
attributed by soil compaction strength estimated fori 2- and 18-inch depths. These estimates 
were based on earlier ANOVA and Cramer’s tests indicating strength o f  association, (c) A 
soil type class map was compiled by a simple recode of vegetation classes that had been 
grouped into three categories. Each vegetation class had a corresponding soil type that was 
mapped, (d) Lastly, an elevation class map was also re-coded from vegetation classes that 
had been grouped into three categories.
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Figure 3. Elevation range (in meters) by vegetation community type at Parramore Island.
The upper maritime forest elevation range was purposefully adjusted with an additional crest 
height data point to illustrate a more representative elevation range. Elevation range for each 
vegetation classes was determined by the low and high elevation value sampled for that class, 
shown along the x-axis. The y-axis represents elevation in meters. The graph depicts an 
overlap in habitat elevation for high marsh species S. patens, T. angustifolia, P. australis, I. 
frutescens, and B. halimifolia.
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Figure 4. Correspondence analysis plot for vegetation and elevation with a non-significant 
Chi-square computed as an intermediary result (p-value = 0.144, d.f.=168). Five factors 
were needed to account for over 90% o f the cumulative contribution explaining the 
association between variables. Factor 1, represented as Dim (1) or the x-axis, contributed 
only 21.33% with eigenvalue 1.00, and factor 2, represented as Dim (2) or the y-axis, 
contributed 21.33% with eigenvalue 1.00. The origin of the graph matrix is found at the 
intersection o f the red vectors. At the end o f  each vector are vegetation sample plots. Plot 
locations, shown by open circles, provide measurable distances (horizontally and vertically) 
from the origin, and this distance is an indication o f how far away the variable is in chi- 
square euclidean distance from the overall marginal row profile. Horizontal and vertical 
distances between points (no diagonal distances) are approximate chi-square distances 
between individual row profiles. The axes provide the scaled distances. The row, or 
vegetation variable, that contributed the most to the Factor 1 was maritime forest (0.875) and 
the row variable contributing the most to the Factor 2 was S. alterniflora (0.886). Column 
variables, or elevation values, contributing to Factor 1 were all the elevation values measured 
within maritime forest and contributing variables to Factor 2 were all elevation values 
measured within S. alterniflora. This result supported a decision to divide elevation into 
groups, with S. alterniflora in a group by itself, and maritime forest in a group joined only by 
high-density shrub. The plot itself also indicates that there are three primary zones grouping 
together elevation values and vegetation codes; unfortunately, variable symbols are plotting 
on top o f each other and difficult to read. Spartina alterniflora is plotted at the top; high- 
density shrub and maritime forest are together on the far right; and S. patens, T. angustifolia, 
P. australis, and Iow-density shrub are together just off the origin.
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Figure 5. Correspondence analysis o f  elevation zones, as justified from earlier findings, was 
used to compute a 2-axis plot for vegetation and elevation values (Figure 5). A highly 
significant Chi-square was computed as an intermediary result (p-value = 0.000, d.f. = 12). 
Two factors were needed to account for over 100% o f  the cumulative contribution explaining 
the association between variables. Factor I, represented as Dim (1) or the x-axis, contributed 
52.28% with eigenvalue 1.00, and factor 2, represented as Dim (2) or the y-axis, contributed 
the remaining 47.72% with eigenvalue 0.913. The origin o f a graph matrix is found at the 
intersection of the red vectors and at the end o f each vector are vegetation sample plots. 
Vegetation plot locations are shown by open red circle symbols. Plot locations provide 
measurable distances (horizontally and vertically) from the origin, and this distance is an 
indication of how far away the variable is in chi-square euclidean distance from the overall 
marginal row profile. Horizontal and vertical distances between points (no diagonal 
distances) are approximate chi-square distances between individual row profiles. The axes 
provide the scaled distances. The row variable, or vegetation, that contributed the most to 
Factor 1 was S. alterniflora (0.897). The row variables contributing the most to Factor 2 
were high-density shrub (0.394), maritime forest (0.315), S. patens (0.164), T. angustifolia, 
and P. australis (0.050). These results also support the idea o f three elevation zones with 
selected vegetation membership within the groups. The correspondence plot suggests that 
perhaps low-density shrub (code 6) could be in its own elevation zone.
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Figure 6. Plotting the results of three test transects illustrated geomorphological similarities 
across a vegetated transverse dune. A methodology to estimate dune height and relative crest 
location under maritime forests was tested based on forest widths. The y-axis measures the 
dune heights, the x-axis the forest width, and the transect break points represents the dune 
crest locations. For the three preliminary transects, ratios were computed based on H = dune 
height, LS = lee slope, and W = forest width. Strong similarities in crest shape and location 
suggests that modeling of crest height and location may be possible from a forest width 
measurement and the ratios computed from these test transects.
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Figure 7. Correspondence analysis was used to compute a 2-axis plot for vegetation and soil 
types (Figure 7). A highly significant Chi-square was computed as an intermediary result (p- 
value = 0.000, d.f.= 18). Two factors were needed to account for over 99.70% o f the 
cumulative contribution explaining the association between variables. Factor 1, represented 
as Dim’ension ’ (1) or the x-axis, contributed 67.54% with eigenvalue 0.865, and factor 2, 
represented as Dim’ension’ (2) or the y-axis, contributed 32.16% with eigenvalue 0.412. The 
origin o f a graph matrix is found at the intersection o f  the red vectors and at the end o f  each 
vector are vegetation sample plots. Vegetation plot locations are shown by open red circle 
symbols and blue symbols represent soil types. Plot locations provide measurable distances 
(horizontally and vertically) from the origin, and this distance is an indication o f how far 
away the variable is in chi-square euclidean distance from the overall marginal row profile. 
Horizontal and vertical distances between points (no diagonal distances) are approximate chi- 
square distances between individual row profiles. The axes provide the scaled distances.
The row variables, or vegetation, that contributed the most to Factor 1 were maritime forest 
(0.797) and S. patens (0.102). Several row variables contributed to Factor 2: high-density 
shrub (0.457), S. patens (0.184), low-density shrub (0.132), S. alterniflora (0.105), maritime 
forest (0.064), and P. australis (0.055). The vegetation variables are plotted in sequence, 1 to 
7, and then 8 off to itself, in large part replicating a natural sequence o f  vegetation spatial 
pattern attributed in part to soil type. The correspondence plot suggests that low-density 
shrub (code 6) could be separate from elevation zone 2.
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Figure 8. Cramer's V statistical test scores of association between 10-vegetation types and 
soil compaction rates at depths of: 0 (0cm), 2 (5cm), 6 (15cm), 12 (30cm) and 18in (46cm). 
The plot shows that strength o f  association increased (Cramer’s V score increases) as the 
depth of compaction measurement increased.
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Figure 9(a)- Average compaction rate for soil at depths o f 0, 2 ,6 , 12, and I8in for 10 
vegetation classes. Y-axis gives compaction rates expressed in pounds per square inch. X- 
axis gives measurement depth in inches. Low marsh vegetation (S. alterniflora) has a lower 
compaction rate at all depths, while high-density shrub and maritime forest show continually 
increasing compaction rates with depth.
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Figure 9(b)- Variability in soil compaction rates increased at deeper depths o f 12 and 18 
inches. A box-and-whisker plot shows that the greatest variation among soil compaction 
rates measured at these deeper depths. The ten vegetation types separate more effectively 
within the wider, more variable, range o f  soil compaction rates.
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Figure 10. Correspondence analysis (CA) plot from an analysis of vegetation community 
types and soil compaction rates at 0, 5, 15, 30, and 46cm depths. CA decomposed row and 
column pairs into two components that explained 73.8% o f the association, with the principal 
axis (axis 1) contributing 43.0% and the second axis (axis 2) contributing 30.8%. Vegetation 
type and soil compaction depth variables are plotted as point data with their respective 
distance from the origin, or intersection o f the two axes, providing an indication of how far 
away each variable is in chi-square distance from the overall marginal row and column 
profile. For depth variables, soil compaction rates at 30 and 46cm were very closely 
associated along the first component axis and closely associated with the second component; 
15 and 5cm were closely related but far removed from the first and second components; and 
surface measurements were plotted in isolation and exceptionally far away from both axis.
All vegetation communities hovered about the origin, or right on the primary component 
axis, except the low marsh species, lower S. patens and S. alterniflora. This plot concurs 
with prior statistical findings that suggested that soil compaction rates at 30 and 46cm were 
most closely associated with vegetation community. Additional information conveyed by 
this graphic was that S', alterniflora and S. patens had the poorest association with 
compaction rates o f all the community types.

Vegetation Community Types 
salter = S. alterniflora 
lowpats = lower elevation S. patens 
hipats = higher elevation S. patens 
lowing = lower elevation T. angustifolia 
hiang = higher elevation T. angustifolia 
lowaust = lower elevation P. australis 
hiaust = higher elevation P. australis 
low shrub = low density shrubs 
hishrub = high density shrubs 
marfor = maritime forest

Soil Compaction Depths 
zeroin = Oin, or surface 
in2 = 2in (5cm) 
in6 = 6in (15cm) 
in 12 = 12in (30cm) 
in 18 = 18in (46cm)
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Chapter 5 to Chapter 6 Transition

In this past chapter, vegetation class was shown to relate statistically with several 

landscape variables: elevation, soil type, and soil compaction strength at 30- and 46cm.

In the summary/concluding Chapter 6, discussion focuses on a need for the integration of 

remote sensing with ecology to advance our potential for informed resource management 

and decision-making. Remote sensing technology is advocated as a tool that should be 

used by resource managers. Additional resource management areas in which remote 

sensing has and could be used beyond those discussed in this manuscript are briefly 

addressed.
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Summary

Landscape data is baseline information needed for detailed studies of biodiversity, 

ecosystems, and sustainability (Cooke and Doomkamp, 1990; Lyle, 1999). Land managers 

need landscape information such as vegetation, soil, and terrain attributes to manage 

effectively (Wheatley et al, 2000). Landscape variables must be acquired in a cost- and time- 

efficient manner (Wheatley et al, 2000). The low cost of acquiring remotely sensed data over 

broad areas at regular intervals in time (Redfem and Williams, 1996), and the capability for 

coincident collection o f multiple variables or themes o f interest (de Blij and Muller, 1996), 

can provide these necessary landscape variables. Regularly updated data are needed because 

resource managers require current land cover for monitoring (Vogelmann et al, 2001). 

Acquisition o f ground data is expensive and will need to be optimized in conjunction with 

remotely sensed imagery (Atkinson et al, 2000).

Remote sensing has been used for landscape characterization (identifying and 

describing by cover type), monitoring changes (presence or absence), and assessing the effect 

o f change on the quality o f the landscape in environmentally sensitive areas (Slater and 

Brown, 2000). For example, the Ecological Monitoring and Assessment Program (EMAP) 

o f  the Environmental Protection Agency uses biological indicators derived from satellite and 

airborne imagery to assess our national ecological resources. Historically, comprehensive 

descriptions of the environment have been difficult to acquire, but remote sensing and 

geographic information systems have greatly assisted in the process (Huggett, 1995).
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Commercial satellite imagery has recently been offered for sale with spectral 

bandwidths o f about 70nm and spatial pixel sizes of 4 and lm  for panchromatic imagery 

(IKONOS). For this study, 4m multispectral airborne imagery, with similarities to IKONOS 

satellite imagery, was acquired over two coastal Virginia study areas. One site, a coastal 

military installation, served as a test location for evaluating land cover classification accuracy 

for four combinations of spectral and spatial image resolution. The second site, a barrier 

island, was used to test for: the classification o f categorical biomass index differences in an 

invasive species; the estimation soil properties and elevation data from the existence of 

vegetation communities; and the inclusion o f a method to apply expert knowledge 

classification correction rules to improve an erroneous land cover classification.

Chapter 2 was an investigation at Fort Story, VA o f spectral, spatial, and spectral and 

spatial resolution combined, as well as a review of six training sample methods used. 

Classification accuracy of maps compiled from imagery with wide bandwidths (75nm) was 

compared to the accuracy o f map classifications derived from narrow bandwidths (25nm). 

Based on the independent contribution o f bandwidth alone, the narrower bandwidth imagery 

returned higher Kappa and overall accuracy scores, in addition to improvements in the 

transformed divergence scores for training classes that were difficult to spectrally separate. 

Specifically, 25nm imagery resulted in higher accuracy cultural feature classifications, and a 

combination o f natural and cultural features.

In a similar test, the independent contribution o f spatial resolution was tested to 

determine if  imagery with 4m pixels returned statistically equivalent image classifications to
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imagery with lm  pixels. Transformed divergence scores o f  difficult to separate training 

sample pairs improved with the 4m imagery. Kappa scores suggest that natural features are 

better interpreted from 4m imagery than lm  imagery. Classification accuracy o f natural 

features from 4m imagery was consistently 5% better than accuracy achieved from lm 

imagery. Classification from cultural, and natural and cultural, features were statistically 

similar regardless o f pixel size.

The joint contribution of spectral and spatial image resolution was evaluated. 

Accuracy results for the narrow bandwidth 25nm imagery with the larger 4m pixel size 

generally outperformed the other three image resolution combinations. The results were 

statistically different between 25nm/4m imagery and 70nm/lm imagery for a classification of 

natural, and natural and cultural features, but were not statistically different between 

25nm/4m imagery and the remaining combinations.

Six training sample methods were compared. An effective number o f  training sample 

pixels were acquired from both the seed grow-15 and seed grow-25 methods, as determined 

from the successful accuracy assessment scores o f image classifications processed using 

these methods. These methods offer an opportunity for a more replicable, objective training 

sample selection process. The polygon training sample method was also effective. Methods 

that collected the smallest training sample sizes were ineffective.

In summary o f  chapter 2, a resource manager should not select 70nm/lm imagery for 

classification when 25nm/lm, 25nm/4m, or 70nm/4m imagery is available. Consistently
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higher Kappa accuracy scores were attained from the 25nm/4m imagery suggesting this 

image resolution combination is the better choice of the four evaluated by this study. If  a 

resource manager were specifically interested in the classification of any individual 

landscape feature evaluated in this study, Appendix 2 provides detailed results o f  the 

accuracy attained for each feature, for each image resolution combination.

Chapter 3 describes a method for determining categorical measures o f P. australis 

biomass indices from high-resolution multispectral imagery. Phragmites australis is an 

undesired opportunistic invader species that can quickly overtake native plant habitat. This 

species needs to be monitored to assure its lateral advance is controlled by remediation 

efforts. Field data (average plot stand height, stems per meter, and average culm diameter) 

and coincident multispectral imagery were acquired.

Biomass indices were computed for each stand from normalized field data by a linear 

scale transform with maximum score procedure (Malczewski, 1999). Phragmites australis 

biomass indices and various combinations o f image channel reflectance values were 

evaluated by cluster analysis tools. Classes and class members defined by field data were 

closely matched to classes and class members defined by the red-channel o f the imagery. The 

result o f this study is that remotely sensed image data correctly separated Phragmites into 

stands o f high, moderate and low-density biomass, as also classified from field verification. 

This result suggests that if the high-density stands were the first to expand laterally, and this 

is a question that warrants further investigation, remote sensing could be useful for targeting 

those high-density sites in need of immediate mitigation. Strategic attacks on laterally
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advancing stands would help resource managers protect higher-value plant communities and 

avert a decline in ecosystem health attributable to loss o f plant diversity/complexity, loss o f 

shelter/habitat, and decline in food source.

Chapter 4 discusses a simple methodology for improving a land cover classification 

map o f  Parramore Island, VA. Cover classification maps defined from image processing 

often contain errors. It is not uncommon to find that some mistakes are plainly visible. 

Targeting these misclassifications can be difficult with the standard tools available within 

image processing software. In this study, ecological rules were introduced to target and 

correct classification mistakes strategically. A four-step process was implemented. First, 

ecological expert knowledge was acquired about the study site. This could be acquired from 

field expertise or literature sources. Second, misclassifications were visually identified based 

on the expert knowledge. Third, IF-THEN-ELSE conditional statements were loosely 

developed to address the mistakes. Lastly, these conditional statements were implemented 

within ERDAS Imagine Spatial Modeler image processing code as a post-classification 

correction model.

Conditional rules were converted into computer interpretable statements with 

ERDAS’ Majority Focus optional statements. All rules were spatial in nature, in that change 

was effected only by adjacency o f feature class pixels identified by the model analyst. The 

analyst defined the criteria for selected pixels to change to a new, ecologically sound feature 

class. Six rule corrections used to post-classify the Parramore Island cover class map 

resulted in the conversion o f over 20 per cent (173 o f  the total 850 hectares) o f the initial land
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cover classification pixels to alternative classes. The method o f post-classification correction 

described in Chapter 4 is portable in the sense that the rules can easily be changed and 

adopted to a new physiographic environment; the model template is extendable to new 

domains.

Chapter 5 describes Parramore Island and the use o f  field data to develop empirical 

models used to estimate elevation, soil type and soil compaction strength from vegetation 

community classes. Vegetation class was selected as the dependent variable because these 

types o f  data are considered to be readily interpretable from remote sensing source (Jensen, 

1996). Accordingly, if  vegetation classifications were established remotely, and empirical 

relationships were established between vegetation, soil, and elevation field data, then 

vegetation class maps could be used to estimate the other variables. Strong correlation 

between soil type and vegetation community enabled the estimation of soil type across the 

entire island. Strength o f association non-parametric statistics were used to assess the inter

relationship between variables. Vegetation was related to elevation, soil type and soil 

compaction strength on Parramore Island.

Elevation heights were grouped into one of three categories. A Cramer’s V score for 

a 3-vegetation class grouping versus the elevation values in those three classes resulted in a 

positive strength of association score of: 0.9884, with a value o f  1.0000 representing perfect 

association between the variables. Elevation zones 1 and 2 had a minimum and maximum 

elevation height. Elevation zone 3 did not sample points to establish an upper elevation. 

Rather, maritime forest concealed the underlying dunes. Equations are provided in Chapter 5
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that illustrate the development o f ratios that were empirically developed from field transect 

data for estimation o f dune height and crest location concealed by maritime forest. These 

ratios suggest consistency in dune shape, height, and crest location, with respect to overlying 

forest width.

Soil type was divided into four classes and compared to vegetation communities. 

Vegetation community class was shown to have a strong positive association with these four 

classes. The Cramer’s V score: 0.85, suggests that vegetation could be used to estimate soil 

type locations on Parramore Island. A soil type map o f the island was subsequently 

developed that provides insight into the physical processes of sediment delivery and removal 

that have shaped its geomorphology.

Soil compaction strength scores were recorded at depths o f 0, 5, 15, 30 and 46cm. 

Vegetation type best explained the variance in soil compaction at the deeper 30 and 46cm 

depths as indicated by respective r2 scores: 0.88 and 0.72. Cramer’s V measures were 

computed for 10, 7 , and 3-vegetation classes and soil compaction strength with scores o f at 

least 0.85 for both 30 and 46cm depths. The greater variation in the soil compaction rates 

for 30 and 46cm depths was responsible for the increased Cramer’s V strength of relationship 

scores with vegetation type.

Conclusions

Remote sensing is an excellent tool to assist in the management o f the coastal zone. 

It should not be over-promoted, however, as a single solution to landscape characterization
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and ecological monitoring. To the contrary, the compilation o f  an accurately characterized 

landscape from remote imagery should rely upon: field truth for training sample 

development and testing data (albeit at a significantly reduced level were remote imagery not 

used); an image analyst trained in processing remotely acquired data; and individuals with 

biogeochemical expertise about the coastal study area that is to be inventoried. Up-to-date 

imagery and landscape classes derived from it are essential tools to help resource managers 

make informed decisions. Remote sensing should be driven by scientific hypothesis and any 

future modeling should account for a remote sensing and landscape process model merge 

(Wessman et al, 1998). To date, implementation o f remote sensing in landscape ecology 

research and applications has been relatively scarce (Gulinck et al, 2000). Ecological models 

should be designed to use direct or derived variables from remote sensing (Wessman et al, 

1998).

The future o f remote sensing is bright. Detailed, accurate measurements of the ocean, 

land, and atmosphere are planned by satellite sensors. Many camera systems are already 

orbiting earth including the MODIS (Moderate-Resolution Imaging Spectroradiometer) 

measuring biological and physical processes such as plankton, land vegetation, and clouds; 

MISR (Multi-angle Imaging Spectro-Radiometer), measuring atmospheric aerosols; ASTER 

(Advanced Spacebome Thermal Emission and Reflection Radiometer), providing 15m 

horizontal spatial resolution imagery for elevation and landform mapping, surface 

temperatures, and rock cover types, and MOPITT (Measurements o f Pollution in the 

Troposphere) measuring methane and CO2 (Glaze, 1999). LIDAR technology offers 

particular promise for the mapping o f elevations at 15 to 100cm vertical accuracy in an
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accurate, timely, and economical way (Hill et al, 2001). Hyperspectral sensors are currently 

acquiring data by airborne and satellite platform and hold promise for better spectral 

separation o f biotic features due to narrower bandwidths. Ecological monitoring from 

remote imagery will continue, as testified to by the $30-million dollar annual remote sensing- 

based ecological monitoring and assessment program (EMAP), the National Science 

Foundation’s continued investment in remote sensing for their Long Term Ecological 

Research (LTER) program, and the US Forest Service use o f imagery for their forest health 

monitoring program (Stone, 1995).

Remote sensing offers a technological advantage to a resource manager. A simple 

way to determine if remote sensing is an appropriate tool for coastal zone landscape 

characterization is to overwhelmingly answer “yes” to the following questions.

• Are the desired landscape data useful for multiple projects?

• Is this, or should this site be routinely monitored?

• Is this project too large to map on the ground with available resources?

• Is the project site largely inaccessible?

• Is this a project site best understood from a complete picture (imagery) rather than a

sampling o f field points?

Additional areas of future research recommended for investigation that were not 

identified in the preceding chapters include:
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o Chapter 2- Compare landscape classification accuracy from Landsat Thematic

Mapper and SPOT XS imagery to the 25nm/lm, 25nm/4m, 70nm/lm, and 70nm/4m 

imagery used for this research.

o Chapter 3- Investigate other invasive plant stands for quantitative correlation between 

field and imagery. Also, visit additional geographic locations containing P. australis 

sites for validation of the present findings.

o Chapter 4- Comprehensive knowledge rules compiled for disparate environments 

should be compiled using other sources such as literature, expert advisors, and first 

hand field experience. The value added in applying this technique might be 

determined by comparing accuracy assessments o f landscape classifications before 

and after applying the knowledge-based rules.

o Chapter 5- Apply the deterministic models for predicting soil type, soil compaction 

rates, and elevation from vegetation at other barrier islands along the mid-Atlantic 

Coast, test for accuracy, and validate or invalidate the portability o f the model. Also, 

measure additional cross-sectional elevation transects o f Parramore Island’s 

transverse dunes to affirm preliminary findings that suggest dune height and crest 

location can be modeled from coincident maritime forest width.
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Appendix - Sample of Fort Story Field Data Collection- Fe bruary 2001
id X Y Oak/Holly Mixed Forest Loblolly Amophilla Maint grass Asphalt Concrete Roof Grey Roof Brown Ocean Sand Clay rip rap
1 409689 4087230 XXX
2 409790 4087651 XXX
3 409813 4087616 XXX
4 409527 4087615 XXX
6 409615 4087233 XXX
7 409509 4087372 “ XXX
8 409640 4087262 XXX
9 409562 4087683 XXX
10 409633 4087472 XXX
11 409600 4087559 XXX
13 409503 4087491 XXX
14 409558 4087439 L XXX
15 409620 4087640 XXX
17 409511 4087673 XXX
19 409479 4087700 XXX
20 409637 4087380 XXX
23 409820 4087651 XXX
25 409815 4087633 XXX
26 409521 4087590 XXX
31 409530 4087578 XXX
33 409846 4087487 XXX
34 409508 4087508 XXX
38 409644 4087318 XXX
39 409778 4087215 XXX
40 409762 4087365 XXX
42 409776 4087460 XXX
43 409562 4087657 XXX
46 409844 4087299 XXX
47 409810 4087693 XXX
48 409777 4087421 XXX
49 409544 4087665 XXX
50 409821 4087374 XXX
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Appendix 2. Accuracy assessment matrices for all image combinations, for natural and 
cultural, natural, and cultural features.

•  25nm/l m/point
•  25nm/l m/polygon
• 25nm/l m/seed 15
• 25nm/lm/seed25
• 25nm/lm/seed2
• 25nm/1 m/seed5

• 25nm/4m/point
•  25nm/4m/polygon
• 25nm/4m/seed 15
• 25nm/4m/seed25
• 25nm/4m/seed2
• 25nm/4m/seed5

• 70nm/l m/point
•  70nm/l m/polygon
• 70nm/l m/seed 15
• 70nm/lm/seed25
• 70nm/lm/seed2
• 70nm/lm/seed5

• 70nm/4m/point
•  70nm/4m/polygon
• 70nm/4m/seed 15
• 70nm/4m/seed25
• 70nm/4m/seed2
• 70nm/4m/seed5
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25-1-polnt-all
Oak holly Mixed Loblolly Dune grass Maint grass Ocean Sand Clay Asphalt Concrete Roofgrey Roof-brown Rip rap diagonal! row total users acc

Oak holly 49 24 25 4 1 2 0 0 0 0 0 2 0 107 4579
Mixed 12 9 8 0 3 0 0 0 0 0 0 0 0 32 28.13

Loblolly 17 11 11 0 0 0 0 0 0 0 1 0 0 40 27.50
Dune grass 12 12 13 18 3 0 0 0 0 0 0 0 0 58 31.03
Maint grass 16 10 7 4 56 0 0 0 0 0 0 0 0 93 27.50

Ocean 0 0 0 0 0 2 0 0 0 0 0 0 0 2 31.03
Sand 0 0 0 0 0 0 3 0 0 0 0 0 0 3 100.00
Clay 0 0 0 0 0 0 0 5 0 0 0 0 0 5 100.00

Asphalt 0 0 0 0 0 5 2 0 18 0 0 0 1 24 66.67
Concrete 0 0 0 0 0 0 0 0 0 10 0 0 0 10 100.00
Roof-grey 0 0 0 0 1 9 2 0 3 1 2 0 0 18 11.11

Roof-brown 0 0 1 1 0 0 0 0 0 0 0 4 0 6 66.67
Rip rap 3 1 4 7 11 15 16 5 31 10 7 3 12 125 9.80

197
col. total 109 67 69 34 75 33 23 10 50 21 10 9 13 523 37 67

producer acc 44 95 13.43 15.94 5294 74.67 6.06 1304 50.00 32.00 47.62 20 00 44.44 9231 O v e ra ll A cc

25-1-point-natural
Oak holly Mixed Loblolly Dune grass Maint grass Ocean Sand Clay diagonal row total users acc

Oak holly 49 24 25 4 1 2 0 0 105 46.07
Mixed 12 9 8 0 3 0 0 0 32 28 13

Loblolly 17 11 11 0 0 0 0 0 39 28 21
Dune grass 12 12 13 18 3 0 0 0 58 31.03
Maint grass 16 10 7 4 56 0 0 0 93 28.21

Ocean 0 0 0 0 0 2 0 0 2 31 03
Sand 0 0 0 0 0 0 3 0 3 100.00
Clay 0 0 0 0 0 0 0 5 5 100 00

153
col. total 106 66 64 26 63 4 3 5 337 45.40

produceracc 46.23 1364 17.19 69.23 68.89 50 00 100.00 100 00 Overall A cc

25-1-point-cultural
Asphalt Concrete Roofgrey Roof-brown Rip rap diagonal row total users acc

Asphalt 16 0 0 0 1 17 94 12
Concrete 0 10 0 0 0 10 100 00
Roof-grey 3 1 2 0 0 6 33.33

Roof-brown 0 0 0 4 0 4 100 00
Riprap 31 10 7 3 12 63 1905

44
col. total 50 21 9 7 13 100 44.00

producer acc 32.00 47.82 2222 57.14 9231 O v e ra ll A cc.
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2S-1-potygon-all I i
Oak holly Mixed Loblolly Dune grass Maint grass Ocean Sand Clay Asphalt Concrete Roofgrey Roof-brown R iprap diagonal row total users acc

Oak holly 45 26 6 0 0 0 o' 0 0 0 1 0 o' 78 57.69
Mixed 19 21 12 1 0 0 o' 0 0 0 0 0 o' 53 39.62

Loblolly 36 18 43 0 0 0 o' 0 0 0 0 0 o' 97 44.33
Dune grass 0 1 6 31 14 0 1' 0 1 0 1 1 o' 62 50.00
Maint grass 3 1 1 2 54 0 o' 0 0 1 0 0 o' 62 44.33

Ocean 0 0 0 0 0 8 o' 0 0 0 0 0 o' 8 50.00
Sand 0 0 0 0 0 0 15' 0 0 3 0 0 o' 18 83.33
Clay 0 0 0 0 0 0 o' 10 0 0 0 0 o' 10 100.00

Asphalt 0 0 0 0 1 5 r 0 40 1 0 0 3 ' 51 7843
Concrete 0 0 0 0 0 0 l ' 0 0 13 1 0 o' 15 80.67
Roof-grey 0 0 0 0 6 5 4 ' 0 3 2 6 1 2 29 20 69

Roof-brown 0 0 0 0 0 0 o' 0 0 0 0 7 o' 7 100 00
Rip rap 0 0 t 0 0 15 1 ' 0 6 1 t 0 s ' 33 24 24

301
col. total 109 67 69 34 75 33 23 10 50 21 10 9 13 523 57.55

producer acc 41 28 31.34 6232 91 18 7200 24.24 65 22 100 00 80.00 61.90 60.00 77 78 6154 Overall Acc

25-1 -polygon-natural
Oak holly Mixed Loblolly Dune grass Maint grass Ocean Sand Clay diagonal row total users acc

Oak holly 45 26 6 0 0 0 o' 0 77 5844
Mixed 19 21 12 1 0 0 o' 0 53 39.62

Loblolly 36 18 43 0 0 0 o' 0 97 44 33
Dune grass 6 1 6 31 14 0 1' 0 59 5254
Maint grass 3 1 1 2 54 0 o' 0 61 44 33

Ocean 0 0 0 0 0 a o' 0 8 52.54
Sand 0 0 0 0 0 0 15' 0 15 100 00
Clay 0 0 0 0 0 0 o ' 10 10 100 00

| 227
col. total 109 67 68 34 68 8 16 10 380 59.74

producer acc 41.28 31.34 63.24 91 18 79.41 100.00 93.75 100.00 Overall Acc

2S-1 -polygon-cultural
Asphalt Concrete Roofgrey Roof-brown Rip rap diagonal row total users acc

Asphalt 40 1 0 0 3' 44 90.91
Concrete 0 13 1 0 o ' 14 92.86
Roofgrey 3 2 6 1 2' 14 42.86

Roof-brown 0 0 0 7 O' 7 100.00
Rip rap 6 1 1 0 8 ’ 16 50.00

74
col. total 49 17 8 8 13 95 77.89

producer acc 81.63 78.47 75.00 87.50 61.54 Overall Acc.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

25NM1M SEED 15 NATURAL AND CULTURAL
RAW DATA

* Oak holly Mixed Loblolly' Dune grass Maml grass Ocean Sand Clay Asphalt Concrete Roof-grey Roof-brown Rip rap diagonal row total users acc
Oak holly 42 21 13 2 1 0 0 0 0 0 1 0 o' 80 52 50

Mixed 32 35 26 1 0 0 0 0 0 0 0 0 o’ 94 37 23
Lobtojly 26 6 23 0 0 0 0 0 0 0 0 0 o ’ 55 4 1 8 2

Dune g ra f t 4 3 3 23 2 0 0 0 0 0 0 1 o’ 36 63 89
Main) grass 5 2 3 5 66 0 1 0 1 1 1 0 o' 65 41 82

Ocean 0 0 0 0 0 9 0 0 0 0 0 0 o' 9 63 89
Sand 0 0 0 0 0 0 14 0 0 3 0 0 of 17 82 35
Oa.Y 0 0 0 0 0 0 0 10 0 0 0 0 o' 10 100 00

Asphalt 0 0 1 0 1 15 0 0 36 1 0 0 2 56 64 29
Concrete 0 0 0 0 0 0 1 0 0 13 0 0 o' 14 92 86
Roof-grey 0 0 0 0 0 0 0 0 0 1 3 0 0* 4 75 00

Roof-brown 0 0 0 0 0 0 0 0 1 0 0 7 o' 8 87 50
Rip rap 0 0 0 3 5 9 7 0 12 2 5 1 11* 55 20 00

292
col total 109 67 69 34 75 33 23 10 50 21 10 9 13 523 55 83

produceracc 36 53 52 24 33 33 67 65 86 00 27 27 6067 10000 72 00 6 1 9 0 3000 77 76 64 62 , O verall Acc

25NM 1MSEED 15 NATURAL
RAW DATA

' Oak holly Mixed Loblolly Dune grass Maint grass Ocean Sand Clay diagonal row total users acc
Oak holly 42 21 13 2 1 0 0 0 79 53 1 6

Mixed 32 35 26 1 0 0 0 0 94 37 23
LobtoUy 26 6 23 0 0 0 0 0 55 41 82

Dune grass 4 3 3 23 2 0 0 0 35 65 71
Maint grass 5 2 3 5 66 0 1 0 82 41 82

Ocean 0 0 0 0 0 9 0 0 9 65 71
Sand 0 0 0 0 0 0 14 0 14 100 00
Clay 0 0 0 0 0 0 0 10 10 100 00

‘ 222
col total 109 67 68 31 69 9 15 10 378 58 73

producer acc 38 53 52 24 33 82 74 19 95 65 100 00 93 33 100 00 O verall Acc

25 NM1M SEED 15 CULTURAL
RAW DATA

Asphalt Concrete Roof-grey Roof-brown Rip rap diagonal row total users acc

Asphalt 36 1 0 0 2 39 92 31
Concrete 0 13 0 0 o’ 13 100 00
Roof-grey 0 1 3 0 o' 4 75 00

Roof-brown 1 0 0 7 o’ 8 87 50
Rip rap 12 2 5 1 11 ’ 31 35 48

70
col total 49 17 6 8 13 95 73 68

oroduceracc 73 47 76 47 37 50 67 50 84 62 O verall Acc
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25NM1M SEED 25 NATURAL AND CULTURAL 1

RAW DATA
'  O ak ho lly ' Mixed Loblolly D une g rass Maint g rass O cean S and Clay Asphalt C oncrete Rool-grey Roof-brown Rip r a p . diagonal row total u se rs  acc

O ak holly 41* 26 7 2 1 0 0 0 0 0 1 0 o' 78 52.56
Mixed 3 0 ' 27 25 1 0 0 0 0 0 0 0 0 o' 83 32.53

Loblolly ! 29 8 30 0 0 0 0 0 0 0 0 0 o' 67 44.78
D une g ras s 4 ' 4 3 25 3 0 0 0 0 0 0 0 o' 39 64.10
Maint g ras s 5 ' 2 2 4 66 0 1 0 0 1 1 1 o' 83 44.78

O cean o' 0 0 0 0 9 0 0 0 0 0 0 o' 9 64 10
S and o' 0 0 0 0 0 15 0 0 1 0 0 o' 16 93.75
Clay o' 0 0 0 0 0 0 10 0 0 0 0 o' 10 1 0 0 0 0

Asphalt o' 0 1 2 5 6 5 0 42 2 1 0 7 ' 71 59.15
C oncrete o' 0 0 0 0 0 1 0 0 17 0 0 o' 18 94.44
Roof-grey o' 0 0 0 0 4 0 0 1 0 7 0 1' 13 53.85

Root-brown o' 0 1 0 0 1 0 0 1 0 0 8 o' 11 72.73
Rip rap I 0 ] 0 0 0 0 13 1 0 6 0 0 0 5 ' 25 20 00

302
col. total 109 67 69 34 75 33 23 10 50 21 10 9 13 523 57 74

producer a c c 3 7 6 1 40.30 43.48 7 3 5 3 8 8  00 27 27 6 5 2 2 100 00 84.00 80 95 7 0 0 0 8 8  89 3 8 4 6 O v e ra l l  A c t

25NM1MSEED25 NATURAL
RAW DATA

O ak holly Mixed Loblolly D une g ras s Maint g rass O cean Sand Clay diagonal row total u s e rs  a cc
Oak holly 41 26 7 2 1 0 0 0 77 52 56

Mixed 30 27 25 1 0 0 0 0 83 32 53
Loblolly 29 6 30 0 0 0 0 0 67 44.78

Dune g rass 4 4 3 25 3 0 0 0 39 64.10
Maint g rass 5 2 2 4 66 0 1 0 80 44 78

O cean 0 0 0 0 0 9 0 0 9 64.10
Sand 0 0 0 0 0 0 15 0 15 100 00
Clay ' 0 0 0 0 0 0 0 10 10 1 0 0 0 0

| 223
col. total 109 67 67 32 70 9 16 10 380 58 68

producer acc 3 7 6 1 40.30 44.78 78 13 94 29 100.00 9 3 7 5 100.00 O verall Acc

25nm 1m seed25 cultural
RAW DATA

Asphalt C oncrete Rool-grey Rool-brown Rip rap  diagonal row total u se rs  acc

Asphalt 42 2 1 0 7 ' 52 80.77
Concrete 0 17 0 0 o' 17 100 00
Rool-grey 1 0 7 0 r 9 77 78

Roof-brown t 0 0 8 o' 9 88  89
R ip rap 6 0 0 0 5 ' 11 4 5 4 5

79
col. total 50 19 8 8 13 98 80 61

oroducer acc 84 00 8 9 4 7 87.50 100.00 38.46 O v e ra ll  Acc



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

25NM 1MSEED2 NATURAL ANO CULTURAL
RAW DATA !

! Oak holly! Mixed Lobloity Dune grass Maint grass Ocean Sand Clay Asphalt Concrete Roof-grey Roof-brown Rip rap diagonal row total users acc
OaK holly 49, " 29 10 4 1 6 0 0 0 0 0 o’ 105 46i57

Mixed r 36* 31 31 1 0 0 0 0 0 0 0 0* 101 30 69
LoWoJly T io1 3 15 0 0 0 0 0 0 0 0 o' 20 5357

Dune grass T 3* 1 2 15 4 0 0 0 0 0 0 o’ 25 60 00
Maint grass 0* 2 2 6 66 0 2 0 0 1 1 o’ 69 53 57

Ocean ; o* 0 0 0 0 4 0 0 0 0 0 0* 4 60 00
Sand o' 0 0 0 1 0 15 0 1 3 0 o’ 20 75 00
Clay o’ 0 0 0 0 0 0 10 0 0 0 o' 10 100 00

Asphalt 0* 0 0 0 1 7 1 0 26 1 0 0* 30 66 42
C onaele o’ 0 0 0 0 0 1 0 0 3 0 o' 4 75 00
Roof-grey 0* 0 0 0 0 0 0 0 0 1 2 o ' 3 66 67

Roof-brown ’ o’ 0 1 0 0 0 0 0 0 0 0 o ’ 7 05 71
Rip rap [ l ’ 1 8 2 16 4 0 23 12 7 13’ 09 1461

255
col total to o 07 69 34 75 33 23 10 50 21 10 9 13 523 48 76

producer acc 44 95 46 27 21 74 44 12 60 00 1212 65 22 too 00 52 00 14 29 20 00 66 07 100 0 0 ( Overall Acc

2SNM 1MSEED2 NATURAL
RAWOATA

Oak holly Mixed Loblolly Dune grass Maint grass Ocean Sand Clay diagonal row total users acc
Oak holty 49 29 16 4 1 6 0 0 105 4 667

Mixed 30 31 31 1 0 0 0 0 101 30 69
Loblolly 10 3 15 0 0 0 0 0 28 53 57

Dune grass 3 1 2 15 4 0 0 0 25 60 00
Maint grass 8 2 2 6 66 0 2 0 66 53 57

Ocean 0 0 0 0 0 4 0 0 4 60 00
Sand 0 0 0 0 1 0 15 0 16 93 75
Clay 0 0 0 0 0 0 0 10 10 100 00

[ 205
col total 100 66 66 26 72 10 17 10 375 64 67

producer acc 45 37 46 97 22 73 57 60 91 67 40 00 60 24 100 00 O verall Acc

25NM 1M SEED2 CULTURAL
RAW DATA

Asphalt C onaele Roof-grey Roof-brown Rip rap diagona row total users acc

Asphalt 26 0 2 o ’ 29 69 66
Concrete 0 3 0 0 o ’ 3 100 00
Roof-grey 0 2 0 o ' 3 66 67

Roof-brown 0 0 0 6 o’ 6 100 00
Rip rap 23 12 7 0 13' 55 23 64

50
col total 49 17 9 6 13 96 57 08

producer acc 53 06 17 65 22 22 75 00 100 00 O verall Acc
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25NM 4M POINT NATURAL AND CULTURAL
RAW DATA-25-4-point

Oak hotly Mixed Loblolly Dune grass Maint grass Ocean Sand Clay Asphalt Concrete Roof-grey Roof-brown Rip rap diagonal row total users acc
Oak hotly 32 16 14 1 1 0* o ’ 0 0 0 0 0 o ’ ’ 66 48 48

Mixed 14 10 6 0 0 0* o ' 0 0 0 0 0 o ’ 30 33 33
LobioOy 25 11 20 1 0 o ' o ’ 0 0 0 1 0 o ' 58 34 48

Dune grass 0 6 14 19 2 o ’ o ' 0 0 0 0 0 o ’ 50 38 00
Maint grass 20 22 13 5 65 o ' r 0 0 1 1 0 o ’ 137 34 48

Ocean 0 0 0 0 0 3 ’ 0 0 0 0 0 0 o ’ 3 38 00
Sand 0 0 0 0 0 o ’ o ’ 0 0 0 0 0 o ’ 0 ffDIV/OI
Clay 0 0 0 0 0 o ’ o ' 10 0 0 0 0 o ' 10 100 00

Asphalt 0 0 1 0 0 o ’ 9 ’ 0 27 2 0 S 5 ' 49 55 10
Concrete 0 0 0 0 0 o ' r 0 0 8 0 0 o ' 9 88 69
Roof-grey 0 0 1 8 7 30 11 0 20 10 8 1 s ’ 104 7 69

Roof'brown 0 0 0 0 0 o ' o ' 0 0 0 0 3 o ' 3 100 00
Riprap ’ 0 0 0 0 0 o ’ r 0 3 0 0 0 o ' 4 0 0 0

205
col total 100 67 69 34 75 33 23 10 50 21 10 9 13 523 39 20

producer acc 29 36 14 93 26 99 55 66 66 67 9 0 9 0 0 0 100 00 54 00 38 10 60 00 33 33 0 0 0 O verall Acc

25NM4M POINT NATURAL
RAW DATA

Oak hotly Mixed Loblolly Dune grass Maint grass Ocean Sand Clay diagona row total users acc
Oak hotly 32 16 14 1 1 o ' 0 0 66 48 48

Mued 14 10 6 0 0 0 0 0 30 33 33
Lobloily 25 11 20 1 0 o ' o ' 0 57 35 09

Dune grass 9 6 14 19 2 o ’ 0 0 50 38 00
Maint grass 29 22 13 5 65 o ' r 0 135 35 09

Ocean 0 0 0 0 0 3 o ’ 0 3 38 00
Sand 0 0 0 0 0 o ' o ’ 0 0 4DIV/0I
Clay 0 0 0 0 0 o ’ 0^ to 10 100 00

159
col total 109 67 67 26 66 3 1 10 351 45 30

producer acc 2936 14 93 29 65 73 08 95 59 100 00 0 0 0 100 00 Overall A c t

25NM 4M POINT CULTURAL
RAW DATA

Asphalt Concrete Roofgrey Roof-brown Rjp rap diagonal row total users acc

Asphalt 27 2 0 5 5 ' 39 69 23
Concrete 0 8 0 0 o ’ 8 100 00
Roof-grey 20 10 8 1 s ' 47 17 02

Roof-brown 0 0 0 3 o ' 3 100 00
R iprap 3 0 0 0 o ' 3 0 0 0

46
cot total 50 20 8 9 13 100 46 00

producer acc 54 00 40 00 100 00 33 33 0 0 0 Overall Acc
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25NM 4M SEE02S NATURAL ANO CULTURAL
RAWOATA

' Oak holly Mixed LobkXly Dune grass Maint grass Ocean Sand Clay Asphalt Concrete Roof-grey Roof-brown Rip rap diagonal rowtoial users acc
OakhoQy ’ ............38 6 3 0 t o ' o ' 0* 0 0 t 0 0 r 49 77 55

Mixed 13 20 6 1 0 o ’ o ’ o ' 0 0 0 0 o! 42 47 62
LobkXly 48 38 53 0 1 o ' o ' o ' 0 0 0 0 o ’ 138 36 41

Dune grass 5 2 2 26 3 o ’ o ' o ' 0 0 0 0 o ’ 38 68 42
Maint g r a u 3 2 0 3 66 o ' 3 ' o ' 4 2 1 1 r 86 3841

Ocean 0 0 0 0 0 16' o ’ o ' 0 0 0 0 o ’ 18 68 42
Sand 0 0 0 0 0 o ' 13* o ’ 0 1 0 0 o ’ 14 92 66

0 0 0 0 0 o ' o ’ to ' 0 0 0 0 o ’ 10 100 00
Asphalt 2 1 3 2 3 9 ' 8 ’ o ' 39 1 3 0 4* 73 53 42

Concrete 0 0 0 0 ! o ' o ’ o ’ 0 14 0 0 o ’ 15 93 33
Roof-grey 0 0 0 0 0 s ' o ' o ' 2 t 5 0 o ’ 16 3125

Roof brown 0 0 0 0 0 o ' o ' o ' 0 0 0 6 o ' 8 100 00
Rip rap '  0 0 0 2 0 o ' r o ’ 4 2 0 0 8* 17 47 06

316
col total 109 67 69 34 75 33 23 10 49 21 10 9 13 522 60 54

producer acc 34 86 29 85 78 81 76 47 88 00 48 48 56 52 100 00 79 59 66 67 50 00 68 69 61 54 Overall Acc

25NM 4M SEE 025 NATURAL
RAW DATA

Oak holly Mued Loblolly Dune grass Maint g rass Ocean Sand Clay diagonal row total users acc
Oak holly 38 6 3 0 1 o' o ' o ' 48 79 17

Mued 13 20 8 1 0 o' o ' o ' 42 47 62
LobkXfy 48 36 53 0 1 o ' 0 o' 138 3841

Dune grass 5 2 2 26 3 0 o' o ' 38 68 42
Maint grass 3 2 0 3 66 o' 3 ' o' 77 3841

Ocean 0 0 0 0 0 16' o ' o ' 16 66 42
Sand 0 0 0 0 0 o ' 13' 0 13 100 00
Clay 0 0 0 0 0 o[ o ' 10* 10 100 00

' 242
col total 107 66 66 30 71 18 16 10 382 63 35

producer acc 35 51 30 30 80 30 86 67 92 96 100 00 81 25 100 00 O verall Acc

25NM4M SEED25 CULTURAL
RAW DATA

Asphalt Concrete Roof-grey Roof-brown Rip rap [diagonal row total users acc

Asphalt 39 1 3 0 4 ‘ 47 82 98
Concrete 0 14 0 0 0 ’ 14 100 00
Roof-grey 2 1 5 0 o ’ 8 62 50

Roof-brown 0 0 0 8 o ' 8 100 00
Riprap 4 2 0 0 8 ’ 14 57 14

74
col total 45 18 6 8 12 91 81 32

producer acc 86 67 77 78 62 50 100 00 66 87 O verall Acc
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25NM 4M SE E 02 NATURAL ANO CULTURAL
RAWOATA

l Oak hotty! Mued Loblolly Dune grass Maint grass Ocean Sand Clay Asphalt Concrete Roof-grey Roof-brown Rip rap diagonal row total users acc
Oak hoffy 0, 0 0 0 0 0 0 0 0 0 0 0 6 ' 0 fOfV/OI

Mixed ’ 20r 14 3 0 0 0 0 0 0 0 0 0 o ’ 43 32 56
loWotfy e i ’ 43 64 1 1 0 0 0 0 0 0 0 o ’ 170 37 65

Dune grass o ’ 0 0 6 0 0 0 0 0 0 0 0 o ’ 6 100 00
Maint grass 22 10 0 19 71 0 3 0 4 1 0 0 2 ’ 132 37 65

Ocean o! 0 0 0 0 9 0 0 0 0 0 0 o ’ 9 100 00
Sand o ’ 0 0 0 0 0 10 0 0 6 0 0 o ’ 16 62 50
Ctay o ’ 0 0 0 0 0 0 10 0 0 0 0 o ’ 10 100 00

Asphalt o ' 0 0 7 0 0 6 0 27 1 0 0 5 ’ 46 58 70
Concrete o ’ 0 0 0 0 0 0 0 0 3 0 0 o ’ 3 100 00
Roof-grey o ' 0 1 1 2 23 3 0 5 to 9 0 3* 57 15 79

Roof-Orown o ' O O O O O 0 0 0 0 6 o ' 8 100 00
Rip rap ’ o ' 0 1 0 1 1 0 14 0 1 3 ' 22 13 64

234
col total 109 67 69 34 75 33 22 10 50 21 10 9 13 522 44 S3

producer acc 0 0 0 20 90 92 75 17 65 94 67 27 27 45 45 100 00 54 00 14 29 90 00 68 89 23 08 O verall Acc

25NM 4M SE E 02 NATURAL
RAW DATA

■ Oak holly Mued Loblolly Dune grass Maint grass Ocean Sand Clay diagonal row lotal users acc
Oak holly 0 0 0 0 0 0 0 0 0 0DIV/O1

M ued 26 14 3 0 0 0 0 0 43 32 56
Loblolly 61 43 64 1 1 0 0 0 170 37 65

Dune grass 0 0 0 6 0 0 0 0 6 100 00
Maint grass 22 10 0 19 71 0 3 0 125 37 65

Ocean 0 0 0 0 0 9 0 0 9 100 00
Sand 0 0 0 0 0 0 10 0 10 100 00
Clay 0 0 0 0 0 0 0 10 10 100 00

184
col total 100 67 67 26 72 9 13 10 373 49 33

producer acc 0 0 0 20 90 95 52 23 06 98 61 100 00 76 92 100 00 O verall Acc

25NM 4M SEED2 CULTURAL
RAWOATA

Asphalt Concrete Roof-grey Roof-brown R iprap diagonal row total users acc

Asphalt 27 1 0 0 5 ’ 33 61 82
Concrete 0 3 0 0 o ’ 3 100 00
Rool-grey 5 10 9 0 3 ’ 27 33 33

Roof-brown 0 0 0 6 o ’ 8 100 00
Rip rap 14 0 1 1 3 ’ 19 15 79

50
col total 46 14 10 9 11 90 55 56

producer acc 1 58 70 21 43 90 00 88 89 27 27 Overall Acc
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2BNM 4M SEEDS NATURAL AND CULTURAL ,
RAW DATA !

I Oak ho ly j Mixed i LoWoOy Dune grass Mainl grass Ocean Sand Clay Asphalt Concrete Roof-grey Roof-brown Rip rap 'diagonal row total users acc
Oak holly 3 2 ' to ' 8 2 3 0 0 0 0 0 2 0 o ’ 57 5614

Mixed 35f 42* 26 1 0 0 0 0 0 0 0 0 0 r 104 40 36
J-qMoMy ’ 34; ‘10 33 0 0 0 0 0 0 0 0 0 o ’ 77 42 86

Dune grass r  O’ 1 16 1 0 0 0 0 0 0 0 o ’ 10 84 21
Maim grass 7* 5 ’ 0 5 67 0 3 0 6 2 2 1 2 ’ 100 42 86

Ocean o ’ 0 0 0 0 10 0 0 0 0 0 0 o ’ 10 8421
Sand o ’ 0 0 0 0 0 0 0 0 0 0 0 o ’ 0 JVDIVfO!
Clay 0 ! 0 0 0 0 0 0 10 0 0 0 0 o ’ 10 100 00

Asphalt o '  0 0 1 0 22 6 0 30 2 4 0 11* 76 39 47
C onaeie o ' 0 0 0 1 0 10 0 0 16 0 0 0* 27 59 28
Rool-grey o ’ 0 0 0 0 1 3 0 0 0 1 0 o ' 5 20 00

Rool-Bmwn 0* 0 0 0 0 0 0 0 0 0 0 8 0* 8 100 00
Riprap ! o ’ 0 1 9 3 0 0 0 13 1 1 0 o’ 28 0 0 0

265
col total 109 ’ 67 69 34 75 33 22 10 49 21 10 13 521 SO 86

produceracc 2936 ; 6269 47 63 47 06 89 33 30 30 000 10000 6122 7619 1000 88 69 000 Overall Acc

25NM4M SEEDS NATURAL
RAWOATA

Oak holly Mixed Loblolly Dune grass Mainl grass Ocean Sand Clay diagonal row total users acc
Oak holly 32* 10 6 2 3 0 0 0 55 58 18

Mixed 35’ 42 26 1 0 0 0 0 104 40 38
Loblolly 34’ 10 33 0 0 0 0 0 77 42 66

Dune grass r  0 1 16 1 0 0 0 19 84 21
Mainl grass 7* 5 0 5 67 0 3 0 87 42 66

Ocean o' 0 0 0 0 10 0 0 10 84 21
Sand o' 0 0 0 0 0 0 0 0 #DIV/0!
Clay o' 0 0 0 0 0 0 10 10 10000

| 210
col total 109 * 67 68 24 71 10 10 362 58 01

produceracc 29 36 62 69 48 63 66 67 94 37 10000 000 100 00 Overall Acc

25NM 4M SEED S CULTURAL
RAW DATA

Asphalt Concrete Roof-grey Roof-brown Rip rap dtagona rowlotal users acc

Asphalt 30 2 4 0 11* 47 63 83
Concrete 0 16 0 0 o’ 16 100 00
Roof-grey 0 0 1 0 o’ 100 00

Root-brown 0 0 0 a o' a 100 00
Riprap 13 1 1 0 o' 15 0 0 0

55
col total 43 19 6 11 87 63 22

producer acc 1 69 77 64 21 1667 100 00 0 0 0 Overall Acc
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70nm 1m point Natural and cultural
RAW DATA-70-1-point

Oak holly1Mixed Loblolly Dune grass Mamt grass Ocean Sand Clay Asphalt Concrete Roof-grey Roof-brown Rip rap 'diagonal row total users acc
Oak holly e T 4 3 10 3 0 o ’ 0 0 0 0 0 o ’ 28 2857

M ued 81 52 54 9 20 0 o ’ 0 0 2 0 0 o ’ 218 23 85
LobtoUy 13 7 9 0 0 0 o ' 0 0 0 0 0 o ' 29 3 103

Dune g raw 0 0 0 4 1 0 0* 0 1 0 0 0 o ’ 6 66 67
Maint grass 7 3 1 6 36 0 2 0 1 0 1 2 r 60 3103

Ocean 0 0 0 0 0 10 o ' 0 0 0 0 0 0* 10 66 67
Sand 0 0 1 1 13 1 10* i 1 4 0 0 o ' 32 3 1 2 5
Clay 0 0 0 0 0 0 o ' 9 0 0 0 0 o ' 9 100 00

Asphalt 0 1 1 t 1 t o ’ 0 29 1 4 7 6* 52 55 77
Concrete 0 0 0 0 0 0 o ' 0 0 8 0 0 o] 8 100 00
Roof-grey 0 0 0 1 1 6 9 ' 0 6 5 3 0 r 36 6 33

Roof-brown 0 0 0 1 0 0 o ' 0 0 0 0 0 o ’ 1 0 0 0
Riprap 0 0 0 1 0 13 2 0 to 1 2 0 5* 34 14 71

183
col total 109 67 69 34 75 33 23 10 50 21 10 9 13 523 34 99

produceracc 7 3 4 77 61 1304 11 76 46 00 30 30 43 48 90 00 58 00 38 10 30 00 0 0 0 38 46 Overall Acc

70nm 1m point Natural
RAW DATA

Oak holly Mixed Loblolly Oune grass Mainl grass Ocean Sand Clay diagonal row total users acc
Oak holly 8 4 3 10 3 0 o ' 0 28 28 57

Mixed 81 52 54 9 20 0 0 0 216 24 07
Loblolly 13 7 9 0 0 0 o ’ 0 29 3103

Dune grass 0 0 0 4 1 0 o' 0 5 80 00
Maint grass 7 3 1 6 36 0 2 ' 0 55 31 03

Ocean 0 0 0 0 0 10 o ' 0 10 80 00
Sand 0 0 1 1 13 1 10* 1 27 37 04
Clay 0 0 0 0 0 0 o ' 9 9 100 00

138
col total 109 66 68 30 73 11 12 10 379 36 41

producer acc 7 3 4 78 79 13 24 13 33 49 32 90 91 83 33 90 00 Overall Arc

70nm 1m point cultural
RAW DATA

Asphalt Concrete Roof-grey Roof-brown Rip r a p ’diagona row total users acc

Asphalt 29 1 4 7 6* 47 61 70
Concrete 0 8 0 0 o ' 8 100 00
Roof-grey 8 5 3 0 r 17 17 65

Roof-brown 0 0 0 0 o ' 0 JDIV/0!
Rip rap 10 1 2 0 5 ‘8 27 78

45
col total 47 15 9 7 12 90 50 00

producer acc 6170 5 333 33 33 0 0 0 4167 Overall Acc
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70NM 1M POLYGON NATURAL AND CULTURAL
RAW DATA«70*1'fX>ty

Oak holly j Mixed Loblolly Dune grass Maint grass Ocean Sand Clay Asphalt Concrete Roof-grey Root-brown Riprap diagonal’ row total users acc
Oak holly 41 17 10 0 0 0 o ' 0 0 0 0 0 T 0

. .  -
68 '6 0  29

Mued 37* 24 14 0 2 0 o ' 0 0 0 0 2 ' 0 79 30 38
Loblolly 26* 23 39 1 1 0 o ' 0 0 0 0 0 0 90 43 33

Dune grass 4* 1 4 27 15 0 o ' 0 2 0 0 0 0 53 50 94
Mainl grass T  1 1 0 52 0 3* 0 2 t 1 0 0 62 43 33

Ocean o ’ 0 0 0 0 9 o ’ 0 0 0 0 0 0 9 50 94
Sand o ’ 0 0 0 0 1 15’ 0 0 3 1 0 1 21 71 43
d a y o f 0 0 0 0 0 o ' 10 0 0 0 0 0 10 100 00

Asphalt o ’ 0 0 3 1 1 r 0 35 1 3 0 10 55 83 64
Concrete 0* 0 0 0 0 0 r 0 0 11 0 0 0 12 91 67
Roof-grey o ’ 1 1 1 4 16 3 ' 0 1 4 4 0 1 36 11 11

Roof-brown O’ 0 0 0 0 0 o ' 0 0 0 0 0 7 100 00
Riprap ‘ ° ;  0 0 2 0 6 o ‘ 0 to 1 1 0 1 21 4 76

275
col total 109 ’ 67 69 34 75 33 23 10 50 21 10 9 13 523 52 58

producer acc 37 61 35 82 56 52 7941 69 33 27 27 65 22 100 00 70 00 52 38 40 00 77 78 7 69 Overall Acc

70NM1M POLYGON NATURAL
RAW DATA

Oak holly Mued Loblolly Dune grass Maint grass Ocean Sand Clay diagonal row total users acc
Oak holly 41 17 10 0 0 0 o ' 0 66 60 29

M ued 37 24 14 0 2 0 o ' 0 77 31 17
Loblolly 2 6 ' 23 39 1 1 0 o ’ 0 90 43 33

Dune grass 4 1 4 27 15 0 o ' 0 51 52 94
Maint grass r  i 1 0 52 0 3 ' 0 56 43 33

Ocean o ' 0 0 0 0 9 o ' 0 9 52 94
Sand o ' 0 0 0 0 1 15' 0 16 93 75
Clay o' 0 0 0 0 0 0^ 10 10 100 00

217
col total 109 ' 66 68 28 70 10 18 10 379 57 26

producer acc 37 61 36 36 57 35 96 43 74 29 90 00 83 33 100 00 Overall Acc

70NM 1M POLYGON CULTURAL
RAW DATA

Asphalt Concrete Roof-grey Roof-brown Rip rap diagonal row total users acc

Asphalt 35 t 3 0 10 49 71 43
Concrete 0 11 0 0 0 11 100 00
Roof-grey 1 4 4 0 1 10 40 00

Roof-brown 0 0 0 7 0 7 10000
Rip rap 10 1 1 0 t 13 7 69

58
col total 46 17 8 7 12 90 64 44

producer acc 76 09 6471 50 00 100 00 8 3 3 Overall Acc
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70NM 4M POINT NATURAL AND CULTURAL I ,
RAW DATA-70-4-potnt I

1 Oak body Mixed Lobtotly Dune grass Maint grass Ocean Sand Clay Asphalt Concrete Rool-grey Roof-brown Rip rap j diagonal row total users acc
Oak ho#y r 59 ' 20 41 12 3 0 0 0 0 0 0 0 0 135 4 370

Mued ia? 22 7 2 0 0 o ' 0 0 0 0 0 o ’ 47 4681
Loblolly 9* 11 5 0 1 0 o ’ 0 0 0 0 0 0* 26 1923

Dune grass 0 0 0 4 0 0 o ’ 0 0 0 0 0 o ' 4 100 00
Maint g rass 24* 14 13 9 65 0 3* 0 3 1 1 0 O’ 133 1923

Ocean 0* 0 0 0 0 5 o ’ 0 0 0 0 0 0* 5 100 00
Sand 0 ? 0 0 0 0 0 r 0 0 0 0 0 0* 1 100 00
Ctay o ’ 0 0 0 0 0 o ' 9 0 0 0 0 o ' 9 100 00

Asphalt 0* 0 0 0 0 0 O' 0 4 0 0 0 r 5 8000
Concrete 0* 0 0 0 0 0 o ' 0 0 5 0 0 o ' 5 100 00
Rpof-grey 0* 0 0 2 4 23 19* 1 22 14 6 1 o ' 100 6 0 0

Roof-brown f 0 2 3 1 0 o ' 0 2 1 2 6 o ' 20 400 0
Rip rap ] O’ 0 1 2 1 5 o[ 0 19 0 1 0 4 ' 33 1212

197
cot total 109 67 69 34 75 33 23 10 50 21 10 9 13 523 37 6 /

producer acc 54 13 32 64 7 25 11 76 66 67 15 15 4 35 90 00 6 0 0 23 61 60 00 86 69 30 77 Overall Acc

70NM 4M POINT NATURAL
RAW DATA

Oak holly Mixed Loblolly Dune grass Maint grass Ocean Sand Clay diagonal row total users acc
Oak hotly 59 20 41 12 3 0 o ' 0 135 43 70

Mixed 16 22 7 2 0 0 0' 0 47 46 61
Loblolly 9 11 5 0 1 0 o ’ 0 26 19 23

Dune grass 0 0 0 4 0 0 o ' 0 4 100 00
Maint grass 24 14 13 9 65 0 3' 0 128 19 23

Ocean 0 0 0 0 0 5 0 0 5 100 00
Sand 0 0 0 0 0 0 r 0 1 100 00
Clay 0 0 0 0 0 0 O’ 9 9 too 00

I 170
col total 108 67 66 27 69 4 9 355 4 7 6 9

producer acc 54 83 32 64 7 5 8 14 61 94 20 100 00 25 00 100 00 Overall Acc

70NM4M POINT CULTURAL
RAW DATA

Asphalt Concrete Roof-grey Roof-brown Rip rap diagonal row total users acc

Asphati 4 0 0 0 l ’ 5 80 00
Concrete 0 5 0 0 o ' 5 100 00
Rool-grey 22 14 6 1 8* 51 11 76

Roof-brown 2 1 2 8 o ' 13 61 54
Rip rap 19 0 1 0 4 ' 24 16 67

27
col total 47 20 9 9 13 96 27 55

produceracc 651 25 00 66 67 66 69 30 77 Overall Acc
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OakhoOy Mued Loblolly Dune grass Maint grass Ocean Sand ' Clay Asphalt Concrete Roof-grey Roof-brown Rip rap! diagonal’ row total users acc
Oak hotty T 49 - 2^ 4 0 0 o’ 0 0 0 0 0 o’ 74 6 6 2 2

Mixed 32 31 15 2 1 0 o ’ O 0 0 0 0 o ’ 81 38 27
LoWoily 23 9 46 0 0 o' 0 0 0 0 0 o’ 78 58 97

Dune grass 5 3 2 26 18 o' 0 7 1 1 2 r 68 41 18
Maint grass 0 3 i 0 51 0 3 ' 0 2 1 0 0 o’ 61 58 97

Ocean 0 0 0 0 0 o' 0 0 0 0 0 o’ 5 41.18
Sand 0 0 0 0 0 1 13' 0 0 4 0 0 2 ’ 20 6 5 0 0
d a y 0 0 0 0 0 o' 10 0 0 0 0 o’ 10 100 00

Asphalt 0 0 1 3 1 2 3 ’ 0 22 0 0 0 7 ’ 39 56 41
Concrete 0 0 0 0 0 o' 0 0 13 0 0 o’ 13 100 00
Root-grey 0 0 0 1 4 25 r 0 7 2 8 1 o' 49 18 33

Roof brown 0 0 0 0 0 o‘ 0 0 0 0 6 o' 6 100 00
Rip rap ] 0 0 0 0 0 3* 0 12 0 1 0 3* 19 1579

285
cot total 109 67 69 34 75 33 23 10 50 21 10 9 13 523 54 49

producer acc 44 95 46 27 66 67 82 35 68 00 15 15 56 52 , 100 00 44 00 61 90 80 00 66 67 23 08 O verall Acc

70NM 4M POLYGON NATURAL
RAW DATA

’ Oak holly Mued Loblotty Dune grass Maint grass Ocean Sand Clay diagonal row total users acc
Oak holly 49 21 4 0 0 0 o ' 0 74 66 22

M ued 32 31 15 2 1 0 o ' 0 81 38 27
Loblolly 23 9 46 0 0 0 o ' 0 78 56 97

Dune grass 5 3 2 28 18 0 o ' 0 56 50 00
Maint g rass 0 3 1 0 51 0 3 0 58 58 07

Ocean 0 0 0 0 0 5 0 0 5 50 00
Sand 0 0 0 0 0 1 13' 0 14 92 86
Clay 0 0 0 0 0 0 o] 10 10 100 00

233
col total 109 67 68 30 70 6 16 10 376 61 97

producer acc 44 95 46 27 67 65 93 33 72 86 83 33 61 25 100 00 O verall Acc

70NM 4M POLYGON CULTURAL
RAW DATA

Asphalt Concrete Roof-grey Roof-brown Rip rap diagonal row total users acc

Asphalt 22 0 0 0 7 ' 29 75 86
Concrete 0 13 0 0 o ' 13 100 00
Roof-grey 7 2 8 1 o ’ 18 44 44

Roof-brown 0 0 0 8 o ’ 6 100 00
Rip rap 12 0 1 0 3* 16 18 75

52
col total 41 15 9 10 82 63 41

producer acc 53 66 86 67 88 89 85 71 30 00 Overall Acc
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RAW DATA ! 1

I Oak holly Mixed Loblolly* Dune grass Maint g r a s s ) Ocean Sand Clay Asphalt Concrete* Rool-grey Roof-brown Rip rap j diagonal row total users acc
Oak hotty '3 8 "7 16* 7 0 0 0 0 0* 0 0 0 69 55 07

Mued 1 i t 12 3* 0 0 0 0 0 0 0 0 0 0* 26 461 5
Lobioliy 40 31 44* 0 2 0 0 0 0 0 0 0 0* 117 37 61

Dune grass 0 0 0* 1 0 0 0 0 0 0 0 0 o] 1 100 00
Mainl grass 20 16 4 f 21 70 0 5 1 8 1 1 1 r 149 37 61

Ocean 0 0 0 0 0 9 0 0 0 0 0 0 0* 9 100 00
Sand 0 0 0 0 0 0 3 0 0 1 0 0 0* 4 75 00
d a y 0 0 0 0 0 0 0 9 0 0 0 0 0* 9 100 00

Asphalt 0 i 2 1 0 0 0 0 17 1 1 0 r 24 70 63
Concrete 0 0 0 0 1 0 0 0 0 0 0 0 0* 9 08 69
Rool-grey 0 0 0 2 1 24 15 0 25 10 8 0 11* 96 8 33

Roof-brown 0 0 0 2 0 0 0 0 0 0 0 6 o' 10 80 00
Rip rap * 0 0 0 0 0 0 0 0 0 0 0 0 0* 0 UDIV/OI

227
col total 109 67 69 34 75 33 23 10 50 21 10 9 13 523 43 40

producer acc 34 06 1791 63 77 2 9 4 93 33 27 27 1304 90 00 34 00 3010 60 00 08 89 0 0 0 Overall Acc
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RAW DATA

' Oak holly Mixed LobkXly Dune grass Maint grass Ocean Sand Clay 'diagonal rowiotal users acc
Oak hotty 38 7 16 7 1 0 0 0 69 55 07

Mixed t l 12 3 0 0 0 0 0 26 46 15
Loblolly 40 31 44 0 2 0 0 0 117 37 61

Dune grass 0 0 0 1 0 0 0 0 1 100 00
Maint g rass 20 16 4 21 70 0 5 1 137 37 61

Ocean 0 0 0 0 0 9 0 0 9 100 00
Sand 0 0 0 0 0 0 3 0 3 100 00
Clay 0 0 0 0 0 0 0 9 9 100 00

* 186
col total 109 66 67 29 73 9 10 371 50 13

producer acc 34 86 18 16 65 67 3 45 95 89 100 00 37 50 90 00 Overall Acc

70NM4MSEED2 CULTURAL
RAW DATA

Asphalt Concrete Roof-grey Roof-brown Rip rap diagonal row total users acc

Asphalt 17 1 1 0 1* 20 85 00
Concrete 0 8 0 0 0* 8 100 00
Roof-grey 25 10 8 0 11* 54 14 81

Roof-brown 0 0 0 8 0* 8 100 00
Rip rap 0 0 0 0 0* 0 4DIV/0!

41
col total 42 19 9 8 12 90 45 56

producer acc 40 48 42 11 68 89 100 00 0 0 0 Overall Acc
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t Oak hoRy MUed Loblolly' D unegrass Maint grass Ocean Sand Clay Asphalt Concrete Roof-grey Roof-brown Rip r a p ’diagonal row total users acc
Oak holly 58’ 14 23 10 2 0 0 0 0 0 0 0 0 ! 107 54 21

Mixed 43* 47 33 0 0 0 0 0 0 0 0 0* 125 37 60
Lobtity 3* 2 to 0 0 0 0 0 0 0 0 0 o ’ 15 6 6 6 7

D unegrass o ’ 0 0 13 t 0 0 0 0 0 1 0 o ’ 15 66 67
Maint grass 5 ’ 4 3 6 68 0 4 1 7 2 1 1 r 103 66 67

Ocean o ’ 0 0 0 0 10 0 0 0 0 0 0 0: 10 66 67
Sand o ' 0 0 0 0 0 2 0 0 0 0 0 o ’ 2 100 00
Clay o ' 0 0 0 0 0 0 9 0 0 0 0 o ’ 9 100 00

Asphalt o ’ 0 0 0 0 0 0 0 14 1 0 0 o ’ 15 93 33
C onaete 0* 0 0 0 1 0 0 0 0 9 0 0 o ’ 10 90 00
Roof-grey o ’ 0 0 3 3 23 17 0 27 9 8 0 12' 102 78 4

Roof-brown o ' 0 0 0 0 0 0 0 1 0 0 6 o ' 9 88 89
Rip rap ’ o ’ 0 0 0 0 0 0 0 1 0 0 0 o ' 1 0 0 0

256
col total 109 67 69 34 75 33 23 10 50 21 10 13 523 48 95

producer acc 53 21 70 15 14 49 38 24 90 67 30 30 8 70 90 00 2 8 0 0 42 86 8 0 0 0 8 8 8 9 0 0 0 Overall Acc

70NM4M SEEDS NATURAL
RAW DATA

Oak holly Mixed Loblolly Dune g rass Maint grass Ocean Sand Clay diagonal row total users acc
Oak holly 58 14 23 10 2 0 0 0 107 54 21

Mixed 43 47 33 2 0 0 0 0 125 37 60
Loblolly 3 2 10 0 0 0 0 0 15 66 67

Dune grass 0 0 0 13 1 0 0 0 14 92 86
Maint grass 5 4 3 6 68 0 4 1 91 66 67

Ocean 0 0 0 0 0 10 0 0 10 92 86
Sand 0 0 0 0 0 0 2 0 2 100 00
Clay 0 0 0 0 0 0 0 9 9 too  00

‘ 217
col total 109 67 69 31 71 10 10 373 56 18

producer acc 53 21 70 15 14 49 4194 95 77 100 00 33 33 90 00 Overall Acc

70NM 4M SEED5 CULTURAL
RAW DATA

Asphalt C onaete Roof-grey Roof-brown Rip rap diagonal row total users acc

Asphalt 14 1 0 0 o ’ 15 93 33
C onaete 0 9 0 0 o ’ 9 100 00
Roof-grey 27 9 8 0 12’ 56 14 29

Roof-brown 1 0 0 8 o ' 9 68 89
Rip rap 1 0 0 0 o ' 0 0 0

39
col total 43 19 12 90 43 33

produceracc 32 56 47 37 100 00 100 00 0 0 0 Overall Acc
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