15 research outputs found
Chaos around Holographic Regge Trajectories
Using methods of Hamiltonian dynamical systems, we show analytically that a
dynamical system connected to the classical spinning string solution
holographically dual to the principal Regge trajectory is non-integrable. The
Regge trajectories themselves form an integrable island in the total phase
space of the dynamical system. Our argument applies to any gravity background
dual to confining field theories and we verify it explicitly in various
supergravity backgrounds: Klebanov-Strassler, Maldacena-Nunez, Witten QCD and
the AdS soliton. Having established non-integrability for this general class of
supergravity backgrounds, we show explicitly by direct computation of the
Poincare sections and the largest Lyapunov exponent, that such strings have
chaotic motion.Comment: 28 pages, 5 figures. V3: Minor changes complying to referee's
suggestions. Typos correcte
Derived length of solvable groups of local diffeomorphisms
Let be a solvable subgroup of the group \diff{}{n} of local complex
analytic diffeomorphisms. Analogously as for groups of matrices we bound the
solvable length of by a function of . Moreover we provide the best
possible bounds for connected, unipotent and nilpotent groups.Comment: 27 page
Planetary Dynamics and Habitable Planet Formation In Binary Star Systems
Whether binaries can harbor potentially habitable planets depends on several
factors including the physical properties and the orbital characteristics of
the binary system. While the former determines the location of the habitable
zone (HZ), the latter affects the dynamics of the material from which
terrestrial planets are formed (i.e., planetesimals and planetary embryos), and
drives the final architecture of the planets assembly. In order for a habitable
planet to form in a binary star system, these two factors have to work in
harmony. That is, the orbital dynamics of the two stars and their interactions
with the planet-forming material have to allow terrestrial planet formation in
the habitable zone, and ensure that the orbit of a potentially habitable planet
will be stable for long times. We have organized this chapter with the same
order in mind. We begin by presenting a general discussion on the motion of
planets in binary stars and their stability. We then discuss the stability of
terrestrial planets, and the formation of potentially habitable planets in a
binary-planetary system.Comment: 56 pages, 29 figures, chapter to appear in the book: Planets in
Binary Star Systems (Ed. N. Haghighipour, Springer publishing company
Populations of planets in multiple star systems
Astronomers have discovered that both planets and binaries are abundant
throughout the Galaxy. In combination, we know of over 100 planets in binary
and higher-order multi-star systems, in both circumbinary and circumstellar
configurations. In this chapter we review these findings and some of their
implications for the formation of both stars and planets. Most of the planets
found have been circumstellar, where there is seemingly a ruinous influence of
the second star if sufficiently close (<50 AU). Hosts of hot Jupiters have been
a particularly popular target for binary star studies, showing an enhanced rate
of stellar multiplicity for moderately wide binaries (>100 AU). This was
thought to be a sign of Kozai-Lidov migration, however recent studies have
shown this mechanism to be too inefficient to account for the majority of hot
Jupiters. A couple of dozen circumbinary planets have been proposed around both
main sequence and evolved binaries. Around main sequence binaries there are
preliminary indications that the frequency of gas giants is as high as those
around single stars. There is however a conspicuous absence of circumbinary
planets around the tightest main sequence binaries with periods of just a few
days, suggesting a unique, more disruptive formation history of such close
stellar pairs.Comment: Invited review chapter, accepted for publication in "Handbook of
Exoplanets", ed. H. Deeg & J. A. Belmont
