88 research outputs found

    Sampling the Solution Space in Genome-Scale Metabolic Networks Reveals Transcriptional Regulation in Key Enzymes

    Get PDF
    Genome-scale metabolic models are available for an increasing number of organisms and can be used to define the region of feasible metabolic flux distributions. In this work we use as constraints a small set of experimental metabolic fluxes, which reduces the region of feasible metabolic states. Once the region of feasible flux distributions has been defined, a set of possible flux distributions is obtained by random sampling and the averages and standard deviations for each of the metabolic fluxes in the genome-scale model are calculated. These values allow estimation of the significance of change for each reaction rate between different conditions and comparison of it with the significance of change in gene transcription for the corresponding enzymes. The comparison of flux change and gene expression allows identification of enzymes showing a significant correlation between flux change and expression change (transcriptional regulation) as well as reactions whose flux change is likely to be driven only by changes in the metabolite concentrations (metabolic regulation). The changes due to growth on four different carbon sources and as a consequence of five gene deletions were analyzed for Saccharomyces cerevisiae. The enzymes with transcriptional regulation showed enrichment in certain transcription factors. This has not been previously reported. The information provided by the presented method could guide the discovery of new metabolic engineering strategies or the identification of drug targets for treatment of metabolic diseases

    Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The yeast <it>Saccharomyces cerevisiae </it>is able to adjust to external oxygen availability by utilizing both respirative and fermentative metabolic modes. Adjusting the metabolic mode involves alteration of the intracellular metabolic fluxes that are determined by the cell's multilevel regulatory network. Oxygen is a major determinant of the physiology of <it>S. cerevisiae </it>but understanding of the oxygen dependence of intracellular flux distributions is still scarce.</p> <p>Results</p> <p>Metabolic flux distributions of <it>S. cerevisiae </it>CEN.PK113-1A growing in glucose-limited chemostat cultures at a dilution rate of 0.1 h<sup>-1 </sup>with 20.9%, 2.8%, 1.0%, 0.5% or 0.0% O<sub>2 </sub>in the inlet gas were quantified by <sup>13</sup>C-MFA. Metabolic flux ratios from fractional [U-<sup>13</sup>C]glucose labelling experiments were used to solve the underdetermined MFA system of central carbon metabolism of <it>S. cerevisiae</it>.</p> <p>While ethanol production was observed already in 2.8% oxygen, only minor differences in the flux distribution were observed, compared to fully aerobic conditions. However, in 1.0% and 0.5% oxygen the respiratory rate was severely restricted, resulting in progressively reduced fluxes through the TCA cycle and the direction of major fluxes to the fermentative pathway. A redistribution of fluxes was observed in all branching points of central carbon metabolism. Yet only when oxygen provision was reduced to 0.5%, was the biomass yield exceeded by the yields of ethanol and CO<sub>2</sub>. Respirative ATP generation provided 59% of the ATP demand in fully aerobic conditions and still a substantial 25% in 0.5% oxygenation. An extensive redistribution of fluxes was observed in anaerobic conditions compared to all the aerobic conditions. Positive correlation between the transcriptional levels of metabolic enzymes and the corresponding fluxes in the different oxygenation conditions was found only in the respirative pathway.</p> <p>Conclusion</p> <p><sup>13</sup>C-constrained MFA enabled quantitative determination of intracellular fluxes in conditions of different redox challenges without including redox cofactors in metabolite mass balances. A redistribution of fluxes was observed not only for respirative, respiro-fermentative and fermentative metabolisms, but also for cells grown with 2.8%, 1.0% and 0.5% oxygen. Although the cellular metabolism was respiro-fermentative in each of these low oxygen conditions, the actual amount of oxygen available resulted in different contributions through respirative and fermentative pathways.</p

    Evidences for a role of two Y-specific genes in sex determination in Populus deltoides

    Get PDF
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Almost all plants in the genus Populus are dioecious (i.e. trees are either male or female), but it is unknown whether dioecy evolved in a common ancestor or independently in different subgenera. Here, we sequence the small peritelomeric X- and Y-linked regions of P. deltoides chromosome XIX. Two genes are present only in the Y-linked region. One is a duplication of a non-Y-linked, female-specifically expressed response regulator, which produces siRNAs that block this gene’s expression, repressing femaleness. The other is an LTR/Gypsy transposable element family member, which generates long non-coding RNAs. Overexpression of this gene in A. thaliana promotes androecium development. We also find both genes in the sex-determining region of P. simonii, a different poplar subgenus, which suggests that they are both stable components of poplar sex-determining systems. By contrast, only the duplicated response regulator gene is present in the sex-linked regions of P. davidiana and P. tremula. Therefore, findings in our study suggest dioecy may have evolved independently in different poplar subgenera

    Natural History of Tuberculosis: Duration and Fatality of Untreated Pulmonary Tuberculosis in HIV Negative Patients: A Systematic Review

    Get PDF
    Background The prognosis, specifically the case fatality and duration, of untreated tuberculosis is important as many patients are not correctly diagnosed and therefore receive inadequate or no treatment. Furthermore, duration and case fatality of tuberculosis are key parameters in interpreting epidemiological data. Methodology and Principal Findings To estimate the duration and case fatality of untreated pulmonary tuberculosis in HIV negative patients we reviewed studies from the pre-chemotherapy era. Untreated smear-positive tuberculosis among HIV negative individuals has a 10-year case fatality variously reported between 53% and 86%, with a weighted mean of 70%. Ten-year case fatality of culture-positive smear-negative tuberculosis was nowhere reported directly but can be indirectly estimated to be approximately 20%. The duration of tuberculosis from onset to cure or death is approximately 3 years and appears to be similar for smear-positive and smear-negative tuberculosis. Conclusions Current models of untreated tuberculosis that assume a total duration of 2 years until self-cure or death underestimate the duration of disease by about one year, but their case fatality estimates of 70% for smear-positive and 20% for culture-positive smear-negative tuberculosis appear to be satisfactory
    corecore